APPENDIXII

i) $I^2R$ Loss

The Influence of Temperature on Resistance:

\[ R_2 = R_1 [1 + \alpha (T_2 - T_1)] \]

\( R_1, R_2 \) = Resistance of conductor.
\( T_1, T_2 \) = Temperature of the conductor.
\( \alpha \) = Temperature co-efficient in \((K^{-1})\)

- 0.0005 for Aluminum conductor
- 0.00392 for hard copper conductor
- 0.004 for soft copper conductor

Skin Effect Ratio:

With increase in frequency (or harmonics), the effective current density produces an increase in effective resistance (which is further required to be corrected for the operating temperature value) and a decrease in effective internal resistance.

Aluminum / Copper conductor at commercial power frequency & harmonic loss evaluation.

All conductors at carrier and radio frequencies.

\[ R^1 = KR \]
\[ R^1 = \text{effective resistance of a linear cylindrical conductor to sinusoidal alternating current at a given frequency.} \]
\[ R = \text{True DC resistance with continuous current.} \]
\[ K = \text{A factor determined from table in terms of } x. \text{ The value of } x \text{ is given by} \]

\[ X = 2\pi a \sqrt{2f \mu / \rho} \]
\( a \) = radius of conductor on cm.
\( f \) = frequency in cycles / sec.
\( \mu \) = magnetic permeability of conductor
Row = resistivity in abohm-cm (abohm = $10^{-9}$ ohm)

X = $0.063598 \sqrt{\mu/R}$

$\mu$ = it’s value for non-magnetic materials (like aluminium, copper etc.) is 1.

R = dc resistance of conductor at operating temperature in ohm/miles.

Manufacturers normally give the value of R20, which is actual dc resistance at 20°C for example,

For 400mm$^2$ cables, R20 = 0.0778
For 300mm$^2$ cables, R20 = 0.1000

After correcting those above values, for actual cable operating temperature i.e. 65°C, the revised values of R65 are calculated and indexed with skin effect ratio for loss evaluation.

ii) Transformer Loss

1. Transformer parameters

$P_{BP}$ = Bid price

$P_{EL}$ = Excitation/non-load loss.

$= P_h + P_e$

Where,

$P_h = K_h \times Vol. \times f x B_{max}^n$

$P_e = K_e \times Vol. \times f^2 \times T^2 \times B_{max}^n$

Vol. = Volume of iron.

T = Lamination thickness
\[ N = \text{Steinmetz co-efficient.} \]
\[ P_h = \text{Hysteresis loss} \]
\[ P_e = \text{Eddy current loss.} \]
\[ K_h = \text{Hysteresis constant.} \]
\[ K_e = \text{eddy current constant.} \]
\[ F = \text{Harmonic nos.} \]
\[ B_{\text{max}} = \text{maximum flux density} \]
\[ B_{\text{max}} = \frac{\Phi_{\text{max}}}{\text{area.}} \]
\[ \Phi_{\text{max}} = V/4.44 \times f \times K_w \times N \]
\[ V = \text{Voltage} \]
\[ K_w = \text{Winding factor} \]
\[ N = \text{Number of turns.} \]
\[ B_{\text{max}} = \text{Promotional to } K \times V/f. \]
\[ P_e = \text{Proportional to } K \times V^2. \]
\[ P_h = \text{Proportional to } K \times V^n / f^{(n-1)} \]

The above is on the assumption that eddy-current loss in the core is independent of frequency and hysteresis loss in the core is inversely proportion to frequency.

However the above analysis is workable/accurate only upto 10\textsuperscript{th} harmonic. However, beyond 10\textsuperscript{th} harmonic, the skin effect is considerable enough to be neglected and hence eddy current core loss component begin to increase, which is accounted for.
\( P_{\text{LL}} = \) Load loss.
\( = P_{\text{DC}} + P_{\text{EC}} + P_{\text{OSL}} \)
\( P_{\text{DC}} = \) dc resistance losses.
\( P_{\text{EC}} = \) winding stray losses due to skin & proximity effects.
\( P_{\text{OSL}} = \) other stray losses.
\( P_{\text{DC}} = \frac{P_0}{P_{1\text{pu}}} \)
\( \text{i.e.} \ (I_1^2 \times R_{\text{DC}}) / P_{1\text{pu}}. \)
\( P_{\text{EC}} = \left[ \frac{(P_1 - P_0)}{P_{1\text{pu}}} \times W \right] \times I_n^2 \times n^q \times \text{pu} \)
\( P_{\text{OSL}} = \left[ \frac{(P_1 - P_0)}{P_{1\text{pu}}} \times (1-\text{w}) \right] \times ((I_n^2 \times n^q) \times \text{pu} \)
\( P_1 = \) Fundamental load losses
\( P_0 = \) DC winding losses.
\( R_{\text{DC}} = \) Equivalent DC resistance.
\( W = \) winding stray loss as a fraction of total stray losses.
\( 1-\text{w} = \) other stray loss as a fraction of total stray losses.
\( q = \) rate of increase of winding stray loss with harmonics.
\( R = \) rate of increases of other stray loss with harmonics.
\( N = \) harmonics.
\( I_1 = \) fundamental component of rms current.
\( I_n = \) pu harmonics current.
## Appendix III
### Arc Furnace Parameters Data Sheet

Transformer rating: 40 MVA, Short Circuit Reactance: 2.460 mΩ, Rated Voltage: 407 V, Nominal Current: 56.74 kA

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>525</td>
<td>40</td>
<td>23.25</td>
<td>32.55</td>
<td>2.66</td>
<td>29.89</td>
<td>43.99</td>
<td>0.814</td>
<td>6.9</td>
<td>186</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>505.5</td>
<td>40</td>
<td>24.32</td>
<td>31.76</td>
<td>2.86</td>
<td>28.9</td>
<td>45.69</td>
<td>0.794</td>
<td>6.4</td>
<td>171</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>486</td>
<td>40</td>
<td>25.4</td>
<td>30.9</td>
<td>3.07</td>
<td>27.83</td>
<td>47.52</td>
<td>0.772</td>
<td>5.9</td>
<td>155</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>466</td>
<td>40</td>
<td>26.51</td>
<td>29.96</td>
<td>3.29</td>
<td>26.66</td>
<td>49.56</td>
<td>0.749</td>
<td>5.4</td>
<td>139</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>446</td>
<td>40</td>
<td>27.77</td>
<td>28.79</td>
<td>3.57</td>
<td>25.22</td>
<td>51.78</td>
<td>0.720</td>
<td>5</td>
<td>123</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>426.5</td>
<td>40</td>
<td>29.09</td>
<td>27.46</td>
<td>3.87</td>
<td>23.59</td>
<td>54.15</td>
<td>0.686</td>
<td>4.5</td>
<td>105</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>407</td>
<td>40</td>
<td>30.56</td>
<td>25.81</td>
<td>4.22</td>
<td>21.58</td>
<td>56.74</td>
<td>0.645</td>
<td>4.1</td>
<td>87 Max S/I_2</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>387</td>
<td>38.03</td>
<td>29.87</td>
<td>23.55</td>
<td>4.21</td>
<td>19.34</td>
<td>54.01</td>
<td>0.670</td>
<td>4.4</td>
<td>94 Max P_arc</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>367</td>
<td>36.07</td>
<td>29.20</td>
<td>21.17</td>
<td>4.2</td>
<td>16.97</td>
<td>56.74</td>
<td>0.587</td>
<td>3.7</td>
<td>60 Max I_2</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>347.5</td>
<td>34.15</td>
<td>28.56</td>
<td>18.72</td>
<td>4.18</td>
<td>14.54</td>
<td>56.74</td>
<td>0.548</td>
<td>3.5</td>
<td>45 Max I_2</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>328</td>
<td>32.24</td>
<td>27.99</td>
<td>16.00</td>
<td>4.16</td>
<td>11.83</td>
<td>56.74</td>
<td>0.496</td>
<td>3.3</td>
<td>30 Max I_2</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>328</td>
<td>32.24</td>
<td>27.99</td>
<td>16.00</td>
<td>4.16</td>
<td>11.83</td>
<td>56.74</td>
<td>0.496</td>
<td>3.3</td>
<td>30 Max I_2</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>308</td>
<td>30.27</td>
<td>27.57</td>
<td>12.49</td>
<td>4.15</td>
<td>8.34</td>
<td>56.74</td>
<td>0.413</td>
<td>3.1</td>
<td>9 Max I_2</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>308</td>
<td>30.27</td>
<td>27.57</td>
<td>12.49</td>
<td>4.15</td>
<td>8.34</td>
<td>56.74</td>
<td>0.413</td>
<td>3.1</td>
<td>9 Max I_2</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>288</td>
<td>28.3</td>
<td>27.33</td>
<td>7.37</td>
<td>4.13</td>
<td>3.25</td>
<td>56.74</td>
<td>0.261</td>
<td>2.9</td>
<td>0 Max I_2</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>288</td>
<td>28.3</td>
<td>27.33</td>
<td>7.37</td>
<td>4.13</td>
<td>3.25</td>
<td>56.74</td>
<td>0.261</td>
<td>2.9</td>
<td>0 Max I_2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>268.5</td>
<td>17.04</td>
<td>12.66</td>
<td>11.41</td>
<td>1.71</td>
<td>9.7</td>
<td>36.64</td>
<td>0.670</td>
<td>4.2</td>
<td>48 Max P_arc</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>268.5</td>
<td>17.04</td>
<td>12.66</td>
<td>11.41</td>
<td>1.71</td>
<td>9.7</td>
<td>36.64</td>
<td>0.670</td>
<td>4.2</td>
<td>48 Max P_arc</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>249</td>
<td>14.72</td>
<td>10.94</td>
<td>9.86</td>
<td>1.48</td>
<td>8.38</td>
<td>34.14</td>
<td>0.670</td>
<td>4.2</td>
<td>42 Max P_arc</td>
<td></td>
</tr>
<tr>
<td></td>
<td>229</td>
<td>12.52</td>
<td>9.3</td>
<td>8.38</td>
<td>1.26</td>
<td>7.13</td>
<td>31.57</td>
<td>0.670</td>
<td>4.2</td>
<td>35 Max P_arc</td>
<td></td>
</tr>
<tr>
<td></td>
<td>209</td>
<td>10.46</td>
<td>7.77</td>
<td>7.00</td>
<td>1.05</td>
<td>5.95</td>
<td>28.89</td>
<td>0.670</td>
<td>4.2</td>
<td>29 Max P_arc</td>
<td></td>
</tr>
<tr>
<td></td>
<td>170</td>
<td>6.98</td>
<td>5.19</td>
<td>4.67</td>
<td>0.70</td>
<td>3.97</td>
<td>23.71</td>
<td>0.670</td>
<td>4.1</td>
<td>16 Max P_arc</td>
<td></td>
</tr>
</tbody>
</table>
Appendix IV

EAF Model Simulation in Pscadfor Furnace