CHAPTER 6

WEAKLY π-REGULAR NI NEAR-RINGS

6.1 Introduction

In this Chapter, we characterize 2-primal near-rings by using its minimal 0-prime ideals and NI near-rings by using its minimal strongly 0-prime ideals. Kim and Kwak [32] asked one question that, "Is a ring R 2-primal if $O_P \subseteq P$ for each $P \in m\text{Spec}(R)$?". In Section 6.2, we prove that if O_P has the IFP for each $P \in m\text{Spec}(N)$, then $O_P \subseteq P$ for each $P \in m\text{Spec}(N)$ if and only if N is a 2-primal near-ring.

In [29], Hong et al. observed that the condition "$R/N \times (R)$ is right weakly π-regular" in Proposition 18 cannot be replaced by the condition "R is right weakly π-regular" in the case of rings. In Section 6.3, we show that in the case of NI near-ring which satisfies $(CZ2)$ the condition "$N/N \times (N)$ is left weakly π-regular" can be replaced by the condition "N is left weakly π-regular".
6.2 Characterization of 2-primal near-rings

In this section, we give some characterization of 2-primal near-ring by using its 0-prime ideals.

Proposition 6.2.1. For each $P \in \text{Spec}(N)$, $O(P)$ and $N(P)$ are ideals of N.

Proof. Let P be a 0-prime ideal of N and let $a_1, a_2 \in O(P)$. Then $a_1N <b_1> = 0$ for some $b_1 \in N \mid P$ and $a_2N <b_2> = 0$ for some $b_2 \in N \mid P$.

Since $b_1, b_2 \in N \mid P$ and $N \mid P$ is an m–system, there exist $b'_1 \in <b_1>$ and $b'_2 \in <b_2>$ such that $b'_1b'_2 \in N \mid P$. Let $b_3 = b'_1b'_2$. For any $n \in N$ and $x \in <b_3>$, $(a_1 - a_2)nx = 0$ implies $a_1 - a_2 \in O(P)$. Let $x \in O(P)$. Then $xN = 0$. Thus for $n, n', n_1 \in N$ and $b' \in $, we have $(n(n' + x) - nn')n_1b' = 0$ implies $n(n' + x) - nn' \in O(P)$ and $(xn)n_1b' = 0$ implies $xn \in O(P)$. Thus $O(P)$ is an ideal of N. Similarly, $N(P)$ is an ideal of N. \hfill \square

Example 6.2.2.

$$
\begin{bmatrix}
D & D \\
0 & D
\end{bmatrix}
$$

Let $N = \begin{bmatrix} D & D \\ 0 & D \end{bmatrix}$ where D is a division ring.

Then N is a near-ring under addition and multiplication of matrices. We also observe the following:

(i) $P = \begin{bmatrix} D & D \\ 0 & 0 \end{bmatrix}$ and $Q = \begin{bmatrix} 0 & D \\ 0 & D \end{bmatrix}$

are 0-prime ideals of N;
6.2. CHARACTERIZATION OF 2-PRIMAL NEAR-RINGS

(ii) \[I = \begin{bmatrix} 0 & D \\ 0 & 0 \end{bmatrix} \]

is a two sided ideal of \(N \), but not a 0-prime ideal of \(N \) since \(PQ \subseteq I \) but \(P \not\in I \) and \(Q \not\in I \);

(iii) \[D \begin{bmatrix} 0 \\ 0 \end{bmatrix} \]

is a left ideal but not a right ideal of \(N \);

(iv) \[\begin{bmatrix} 0 & 0 \\ 0 & D \end{bmatrix} \]

is a right ideal but not a left ideal of \(N \);

(v) \[D \begin{bmatrix} 0 \\ 0 \end{bmatrix} \]

is neither a left nor a right ideal of \(N \);

(vi) \[P_0(N) = \begin{bmatrix} 0 & D \\ 0 & 0 \end{bmatrix} = N(N). \]

Therefore \(N \) is a 2-primal near-ring.

Also \(O(P) = (0); \overline{O}(P) = P_0(N); \)

\[O_P = \begin{bmatrix} D & 0 \\ 0 & 0 \end{bmatrix} \]

\[\overline{O}_P = O_P; \ N(P) = \overline{N}(P) = N_P = \overline{N}_P = P. \]

\[O(Q) = \overline{O}(Q) = O_Q = \overline{O}_Q = Q \text{ and } N(Q) = \overline{N}(Q) = N_Q = \overline{N}_Q = P_0(N). \]
The following results might be helpful for the criterion for a certain class of rings to be 2-primal.

Theorem 6.2.3. For a near-ring N, the following statements are equivalent:

(i) N is 2-primal;

(ii) $P_0(N)$ is a completely semiprime ideal of N;

(iii) $N(P)$ is a completely semiprime ideal of N for each $P \in m\text{Spec}(N)$;

(iv) $\overline{N_P} = \overline{N(P)} = N(P)$ for each $P \in m\text{Spec}(N)$;

(v) $N(P) = N_P$ for each $P \in m\text{Spec}(N)$;

(vi) $N_P \subseteq P$ for some $P \in m\text{Spec}(N)$;

(vii) $N_P/P_0(N) \subseteq P/P_0(N)$ for each $P \in m\text{Spec}(N)$.

Proof. (i) \Rightarrow (ii): Since $P_0(N) = N(N)$, for any x in N, $x^2 \in P_0(N)$ implies x^2 is nilpotent and hence $x \in N(N) = P_0(N)$. Therefore, $P_0(N)$ is a completely semiprime ideal of N.

(ii) \Rightarrow (iii): Let P be a minimal 0-prime ideal of N. Let $x \in N$ be such that $x^2 \in N(P)$. Then $x^2 N \subseteq P_0(N)$ for some $b \in N \setminus P$. Since $P_0(N)$ is a completely semiprime ideal of N, it has the IFP. So $xN \subseteq P_0(N)$ which implies $xN \subseteq P_0(N)$. Thus $x \in N(P)$ and hence $N(P)$ is completely semiprime.

(iii) \Rightarrow (i): Let $a \in N(N)$. Then $a^n = 0$ for some positive integer n. If $a \notin P_0(N)$, then there exists a minimal 0-prime ideal P of N such that $a \notin P$. Since $N(P)$ is a completely semiprime ideal, $a^n = 0 \in N(P)$ implies $a \in N(P) \subseteq P$, a contradiction. Hence $a \in P_0(N)$.
(ii) ⇒ (iv) : Let P be a minimal 0-prime ideal of N and let $a \in \overline{N}_P$. Then $a^n \in N_P$ for some positive integer n. Thus $a^n b \in P_0(N)$ for some $b \in N \mid P$. Since $P_0(N)$ is completely semiprime ideal of N, it has the IFP. By Theorem 1.2.18, $ab \in P_0(N)$. Therefore $aN < b > \subseteq P_0(N)$ for some $b \in N \mid P$ and so $a \in N(P)$. Thus $\overline{N}_P \subseteq N(P)$. But $N(P) \subseteq N_P \subseteq \overline{N}_P$ and $\overline{N}(P) \subseteq \overline{N}_P$.

Therefore, $\overline{N}_P = \overline{N}(P) = N(P)$ for each $P \in \text{mSpec}(N)$.

(iv) ⇒ (v) ⇒ (vi) : These are obvious.

(vi) ⇒ (vii) : Let P be a minimal 0-prime ideal of N. Let $\overline{N} = N/P_0(N)$ and $\overline{P} = P/P_0(N)$. Let $\overline{a} = a + P_0(N) \in N_P$ for some $a \in N$. Then there exists $\overline{b} \in \overline{N} \mid \overline{P}$ such that $\overline{a} \overline{b} \in P_0(\overline{N}) = \overline{0}$. Thus $ab \in P_0(N)$ and so $a \in N_P \subseteq P$. Therefore $\overline{a} \in \overline{P}$ and hence $N_P \subseteq \overline{P}$.

(vii) ⇒ (i) : Suppose that $\overline{N} = N/P_0(N)$ is not reduced. Then there exists $\overline{a} \in \overline{N}$ such that $\overline{a}^2 = \overline{0}$ and $\overline{a} = \overline{0}$. Thus $a \not\in P_0(N)$ and hence $a \not\in P$ for some $P \in \text{mSpec}(N)$. Then $\overline{a} \not\in \overline{P}$ and so $\overline{a} \in \overline{N} \mid \overline{P}$. But since $\overline{a}^2 = \overline{0}$, we obtain $\overline{a} \in N_P \subseteq \overline{P}$, which is a contradiction. Therefore $P_0(N) = N(N)$ and hence N is 2-primal.

Corollary 6.2.4. For a near-ring N, assume that N is 2-primal. If $P = N(P)$ for each $P \in \text{Spec}(N)$, then P is completely prime ideal of N.

Proof. Suppose that N is a 2-primal near-ring. Let $xy \in P = N(P)$. Then there exists $b \in N \mid P$ such that $(xy)N < b > \subseteq P_0(N)$. Since $P_0(N)$ has the IFP, we have $(xNy)N < b > \subseteq P_0(N) \subseteq P$ and so $xNy \subseteq P$ since $b \not\in P$. Hence $x \in P$ or $y \in P$ since P is a 0-prime ideal of N. Therefore, P is a completely prime ideal of N.

Proposition 6.2.5. For a near-ring N, we have the following:
Theorem 6.2.6. For a near-ring \(N \), assume that \(N \) is 2-primal. Then for each \(P \in \text{Spec}(N) \), the following statements are equivalent:

(i) \(P \in \text{mSpec}(N) \);

(ii) \(N(P) = P \).

Proof. (i) \(\Rightarrow \) (ii) : Let \(P \) be a minimal 0-prime ideal of \(N \) and let \(a \in P \). Suppose \(a \notin N(P) \). Let \(S = \{a, a^2, a^3, \cdots \} \). If \(0 \in S \), then \(a^k = 0 \) for some positive integer \(k \) and hence \(a \in N(N) = P_0(N) \), which implies that \(a \in N(P) \) by...
Proposition 6.2.5, a contradiction. So \(0 \not\in S \). Thus \(S \) is a multiplicative system that does not contain 0. Let \(L = N \mid P \), i.e., \(L \) is an \(m \)-system. Let \(T \) be the set of all non-zero elements of \(N \) of the form \(a^{t_0} x_1 a^{t_1} x_2 \cdots a^{t_{n-1}} x_n a^{t_n} \), where \(x_i \in L \) and the \(t_i \)'s are positive integers with \(t_0 \) and \(t_n \) allowed to be zero. Clearly, \(L \subseteq T \). Let \(M = T \cup S \). We show that \(M \) is an \(m \)-system. Let \(x, y \in M \). If \(x, y \in S \), then \(xy \in S \subseteq M \) and we are done. Let \(x \in S \) and \(y \in T \), say \(x = a^s \) and \(y = a^{t_0} y_1 a^{t_1} y_2 a^{t_2} \cdots y_n a^{t_n} \). If \(xy = 0 \), then \(xy \in T \). Suppose \(xy = 0 \). Since \(y_1, y_2 \in L \), there exist \(y'_1 \in <y_1> \) and \(y'_2 \in <y_2> \) such that \(y'_1 y'_2 \in L \). Since \(y'_1 y'_2, y_3 \in L \), there exist \(y'_{12} \in <y'_1 y'_2> \subseteq (<y_1> <y_2>) \) and \(y'_3 \in <y_3> \) such that \(y'_{12} y'_3 \in L \). Continuing this process, we get \(y'_{123\cdots n-2} y'_{n-1}, y_n \in L \). Then there exist \(y'_{123\cdots n-1} \in (y'_{123\cdots n-2} y'_{n-1}) \subseteq (\cdots (((y_1) (y_2)) (y_3)) \cdots (y_{n-1})) \) and \(y'_n \in <y_n> \) such that \(w = y'_{123\cdots n-1} y'_n \in L \). Since \(xy = 0 \), \(xy \in P_0(N) \). Thus \(a^s a^{t_0} y_1 a^{t_1} y_2 \cdots y_n a^{t_n} \in P_0(N) \). Since \(P_0(N) = N(N) \), \(P_0(N) \) is completely semiprime ideal of \(N \) and hence \(y_1 y_2 \cdots y_n a^{s+t_0+t_1+\cdots+t_n} \in P_0(N) \). Choose \(m = s + t_0 + t_1 + \cdots + t_n \). Then \(y_1 y_2 \cdots y_n a^m \in P_0(N) \). Since \(P_0(N) \) has the IFP, \(<y_1> <y_2> \cdots <y_n> <a^m> \subseteq P_0(N) \). Continuing this process, we obtain \(<\cdots <<y_1> <y_2> > > <y_3> > \cdots <y_{n-1} > > <y_n> > <a^m> \subseteq P_0(N) \) and so \(y'_{123\cdots n-1} y'_n a^m \in P_0(N) \). Hence \(wa^m \in P_0(N) \), where \(w = y'_{123\cdots n-1} y'_n \). Since \(P_0(N) \) is a completely semiprime ideal, \((aw)^m \in P_0(N) \) and hence \(aw \in P_0(N) \). Thus \(a \in N_P = N(P) \), which is a contradiction. Therefore, if \(x \in S \), \(y \in T \), then \(xy = 0 \) and so \(xy \in T \).

Similarly, one can show that if \(x, y \in T \) then \(xy = 0 \) and \(xy \in T \). This shows that \(M \) is an \(m \)-system that is disjoint from (0). Hence, by Proposition 1.2.15 there is a 0-prime ideal \(Q \) that is disjoint from \(M \) such that \(a \not\in Q \) and \(Q \subseteq P \). Since \(P \) is a minimal 0-prime ideal, \(P = Q \). Therefore \(a \not\in P \), which
is a contradiction. Consequently, $a \in N(P)$.

(ii) \Rightarrow (i) : If $Q \subseteq P$ for $Q \in m\text{Spec}(N)$, then

$$N(P) \subseteq N(Q) \subseteq Q \subseteq P = N(P)$$

Therefore, $P \in m\text{Spec}(N)$. \Box

Theorem 6.2.7. For a near-ring N, the following statements are equivalent:

(i) N is 2-primal;

(ii) $\overline{O}_P \subseteq P$ for each $P \in m\text{Spec}(N)$;

(iii) $N(N) = \bigcap_{P \in m\text{Spec}(N)} \overline{O}_P = P_0(N)$.

Proof. (i) \Rightarrow (ii) : Note that $\overline{N}_P = N(P) \subseteq P$ and therefore, $\overline{O}_P \subseteq P$ for each $P \in m\text{Spec}(N)$.

(ii) \Rightarrow (iii) : Since $\overline{O}_P \subseteq P$ for each $P \in m\text{Spec}(N)$,

$$\bigcap_{P \in m\text{Spec}(N)} \overline{O}_P \subseteq P_0(N).$$

Let $a \in N(N)$. Then $a^m = 0 \in O(P)$ for some integer m and any $P \in m\text{Spec}(N)$. Hence $a \in \bigcap_{P \in m\text{Spec}(N)} \overline{O}_P$. Thus

$$N(N) \subseteq \bigcap_{P \in m\text{Spec}(N)} \overline{O}_P \subseteq P_0(N) \subseteq N(N)$$

(iii) \Rightarrow (i) : It is obvious. \Box

Proposition 6.2.8. Assume that $O(P)$ is a 0-prime ideal of near-ring N for each $P \in m\text{Spec}(N)$. Then $O(P)$ has the IFP for each $P \in m\text{Spec}(N)$ if and only if N is a 2-primal near-ring.
Proof. Assume that N is a 2-primal near-ring. Let P be a minimal 0-prime ideal of N such that $O(P)$ is a 0-prime ideal of N. Let $xy \in O(P)$ for $x, y \in N$. This implies that $xyN <z> = 0$ for $z \in N \setminus P$. Then $xyN <z> \subseteq P$. Since $z \not\in P$ and P is 0-prime, $xy \in P$. Therefore, $O(P) \subseteq P$. Since P is a minimal 0-prime ideal, $O(P) = P$. Since N is 2-primal and $P \in mSpec(N)$, $N(P) = P$ by Theorem 6.2.6. Therefore P is completely prime by Corollary 6.2.4. Since $P = O(P)$, $O(P)$ is completely prime. In particular, $O(P)$ has the IFP.

Conversely, suppose that $O(P)$ has the IFP for each $P \in mSpec(N)$. Let $x \in N(N)$. This implies that $x^n = 0$ for some positive integer n. So that $x^n \in O(P)$. If $x \not\in P_0(N)$, then there exists a minimal 0-prime ideal P of N such that $x \not\in P$. Since P is a 0-prime ideal, there exist $r_1, r_2, \cdots, r_{n-1} \in N$ such that $xr_1x \cdots xr_{n-1}x \not\in P$. But since $O(P)$ has the IFP, $xr_1x \cdots xr_{n-1}x \in O(P)$. Since $O(P) \subseteq P$, $xr_1x \cdots xr_{n-1}x \in P$, a contradiction. Thus $x \in P_0(N)$. Therefore $N(N) \subseteq P_0(N)$. Always $P_0(N) \subseteq N(N)$. Hence $N(N) = P_0(N)$.

\[\Box \]

Proposition 6.2.9. If $O(P)$ has the IFP for each $P \in mSpec(N)$, then for every $P \in mSpec(N)$, $O(P)$ is a 0-prime ideal if and only if $O(P)$ is a completely prime ideal of N.

Proof. Suppose that $O(P)$ is a 0-prime ideal for every $P \in mSpec(N)$. Let $xy \in O(P)$ for $x, y \in N$. If $x \in O(P)$, we have done. Suppose $x \not\in O(P)$. Since $xy \in O(P)$ and $O(P)$ has the IFP, $xNy \subseteq O(P)$. This implies that $xNyN <z> = 0$ for $z \in N \setminus P$. This implies that $xNyN <z> \subseteq P$. Since P is 0-prime, $xNy \subseteq P$ and therefore $x \in P$ or $y \in P$. By Proposition 6.2.8, $P = O(P)$. Since $x \not\in O(P)$, $x \not\in P$. Therefore $y \in P = O(P)$. Hence $O(P)$
is completely prime. The Converse is obvious. □

Proposition 6.2.10. Let \(N \) be a near-ring with unity. Let \(O(P) \) be a 0-prime ideal of \(N \) for each \(P \in \text{mSpec}(N) \). Then the following are equivalent:

(i) \(N \) is a 2-primal near-ring;

(ii) \(O(P) \) has the IFP for each \(P \in \text{mSpec}(N) \);

(iii) \(O(P) \) is a completely semiprime ideal for each \(P \in \text{mSpec}(N) \);

(iv) \(O(P) \) is a symmetric ideal for each \(P \in \text{mSpec}(N) \);

(v) \(xy \in O(P) \) implies \(yN x \subseteq O(P) \) for \(x, y \in N \) and for each \(P \in \text{mSpec}(N) \).

Proof. (i) \(\Rightarrow \) (ii): It follows from Proposition 6.2.8.

(ii) \(\Rightarrow \) (iii): By Proposition 6.2.9, \(O(P) \) is a completely prime ideal and hence \(O(P) \) is completely semiprime.

(iii) \(\Rightarrow \) (iv): Suppose that \(O(P) \) is a completely semiprime ideal for each \(P \in \text{mSpec}(N) \). Therefore it has the IFP. Let \(a, b, c \in N \) be such that \(abc \in O(P) \). We shall prove that \(acb \in O(P) \). Since \(abc \in O(P) \), there exists \(s \in N \mid P \) such that \(abcN <s> = 0 \). So that \(abcN <s> \subseteq O(P) \). Since \(O(P) \) has the IFP, \(acbcN <s> \subseteq O(P) \). Suppose that \(cN <s> \notin O(P) \). If \(acb \notin O(P) \), since \(O(P) \) is 0-prime there exists some \(n \in N \) such that \(acbncN <s> \notin O(P) \). It contradicts the IFP of \(O(P) \). Therefore \(acb \in O(P) \).

Suppose that \(cN <s> \subseteq O(P) \). Since \(O(P) \) has the IFP, \(cbN <s> \subseteq O(P) \). Since \(O(P) \) is 0-prime and \(s \notin P = O(P) \), \(cb \in O(P) \). Therefore \(acb \in O(P) \). Hence \(O(P) \) is a symmetric ideal in \(N \).
(iv) \(\Rightarrow\) (v) : Suppose that \(xy \in O(P)\) for \(P \in m\text{Spec}(N)\). Since \(O(P)\) is symmetric and \(N\) has unity, \(yx \in O(P)\). Since \(O(P)\) has the IFP, \(yNx \subseteq O(P)\).

(v) \(\Rightarrow\) (i) : Let \(x \in N(N)\). Then \(x^r = 0\) for some \(r\). So that \(x^r \in O(P)\) for \(P \in m\text{Spec}(N)\). Suppose that \(x \notin P_0(N)\). Since \(P_0(N) = \bigcap_{P \in \text{Spec}(N)} P\), \(x \notin P\). Since \(P\) is a 0-prime ideal, there exist \(n_1, n_2, \ldots, n_{r-1} \in N\) such that \(xn_1x \cdots xn_{r-1}x \notin P\). Since \(xy \in O(P)\), by hypothesis \(yNx \subseteq O(P)\). Therefore \(xn_1x \cdots xn_{r-1}x \in O(P) \subseteq P\), a contradiction. Thus \(x \in P_0(N)\). Hence \(N(N) \subseteq P_0(N)\). Always \(P_0(N) \subseteq N(N)\) and consequently \(N\) is a 2-primal near-ring.

\[\square\]

Theorem 6.2.11. Let \(O(P)\) be a 0-prime ideal for each \(P \in m\text{Spec}(N)\). Then the following are equivalent:

(i) \(N\) is a 2-primal near-ring;

(ii) \(O(P)\) has the IFP;

(iii) Every minimal 0-prime ideal of \(N\) is a completely prime ideal of \(N\).

Proof. (i) \(\Rightarrow\) (ii) : It follows from Proposition 6.2.8.

(ii) \(\Rightarrow\) (iii) : Let \(P\) be a minimal 0-prime ideal of \(N\). Let \(a, b \in N\) be such that \(ab \in P\). If \(b \in P\), we have done. Suppose that \(b \notin P\). Since \(O(P) = P\), \(ab \in O(P)\). Since \(O(P)\) has the IFP, \(aNb \subseteq O(P) = P\). Since \(P\) is 0-prime and \(b \notin P\), \(a \in P\). Hence, \(P\) is a completely prime ideal.

(iii) \(\Rightarrow\) (i) : Let \(x \in N(N)\). Then \(x^r = 0\) for some \(r\). So that \(x^r \in P\), where \(P \in m\text{Spec}(N)\). Since every minimal 0-prime ideal is completely prime, \(x \in P\) for every \(P \in m\text{Spec}(N)\).

Since \(P_0(N) = \bigcap_{P \in \text{Spec}(N)} P\), \(x \in P_0(N)\). Thus \(N(N) \subseteq P_0(N)\). \[\square\]
Theorem 6.2.12. Let \(O(P) \) be a 0-prime ideal of \(N \) for every \(P \in \text{mSpec}(N) \). Then \(N \) is a 2-primal near-ring if and only if \(P = \overline{O}(P) \) for every minimal 0-prime ideal \(P \) of \(N \).

Proof. Suppose that \(N \) is a 2-primal near-ring. Then \(O(P) \) is a completely prime ideal of \(N \) by Proposition 6.2.8. Let \(a \in \overline{O}(P) \). Then \(a^m \in O(P) \). Since \(O(P) \) is completely prime, \(a \in O(P) \). Therefore \(\overline{O}(P) \subseteq O(P) \). Clearly, \(O(P) \subseteq \overline{O}(P) \). Thus \(O(P) = \overline{O}(P) \). Since \(O(P) \) is a 0-prime ideal of \(N \), \(P = O(P) \). Hence \(P = \overline{O}(P) \).

Conversely, assume that \(P = \overline{O}(P) \) for every minimal 0-prime ideal \(P \) of \(N \). Let \(x \in N(N) \). This implies that \(x^n = 0 \) for some \(n \). So \(x^n \in P \) for every \(P \in \text{mSpec}(N) \). Since \(P = \overline{O}(P) = O(P) \), \(x^n \in O(P) \). Since \(O(P) \) is completely prime, \(x \in O(P) = \overline{O}(P) = P \). This implies that \(x \in P_0(N) \). Thus \(N(N) \subseteq P_0(N) \) and consequently \(N \) is a 2-primal near-ring.

In [32], Kim and Kwak asked one question that "Is a ring \(R \) 2-primal if \(O_P \subseteq P \) for each \(P \in \text{mSpec}(R) \)?". Here we prove the following theorem for near-rings.

Theorem 6.2.13. If \(O_P \) has the IFP for each \(P \in \text{mSpec}(N) \), then \(O_P \subseteq P \) for each \(P \in \text{mSpec}(N) \) if and only if \(N \) is a 2-primal near-ring.

Proof. Let \(x \in N(N) \). Then \(x^n = 0 \) for some \(n \). So that \(x^n \in O(P) \subseteq O_P \). Suppose \(x \notin P_0(N) \). Since \(P_0(N) = \bigcap_{P \in \text{mSpec}(N)} P \), there exists \(P \in \text{mSpec}(N) \) such that \(x \notin P \). Since \(P \) is a 0-prime ideal, there exist \(r_1, r_2, \ldots, r_{n-1} \in N \) such that \(x r_1 x \cdots x r_{n-1} x \notin P \). But since \(O_P \) has the IFP, \(x r_1 x \cdots x r_{n-1} x \in O_P \). Again since \(O_P \subseteq P \), \(x r_1 x \cdots x r_{n-1} x \in P \), a contradiction. Thus \(x \notin P_0(N) \). Hence \(N(N) \subseteq P_0(N) \).
Conversely, assume that \(N \) is a 2-primal near-ring. By Theorem 6.2.7, \(\mathcal{O}_P \subseteq P \) for each \(P \in m\text{Spec}(N) \). Since \(O_P \subseteq \mathcal{O}_P \), \(O_P \subseteq P \) for each \(P \in m\text{Spec}(N) \).

6.3 NI near-rings which are weakly \(\pi \)-regular

In this section, we show that if \(N \) is an NI near-ring which satisfies the condition (CZ2), then (i) every strongly 0-prime ideal is maximal if and only if \(N \) is left weakly \(\pi \)-regular. (ii) \(P \in m\text{SSpec}(N) \) if and only if \(P = \mathcal{O}(P) \).

For a near-ring \(N \), let \((m)\text{SSpec}(N)\) be the set of all (minimal) strongly 0-prime ideals of \(N \). For \(P \in \text{SSpec}(N) \), we have

\[
\mathcal{O}(P) = \{ a \in N \mid aN < b \geq 0 \text{ for some } b \in N \mid P \},
\]

\[
\mathcal{O}(P) = \{ a \in N \mid a^m \in \mathcal{O}(P) \text{ for some positive integer } m \},
\]

\[
O_P = \{ a \in N \mid ab = 0 \text{ for some } b \in N \mid P \},
\]

\[
O_P = \{ a \in N \mid a^m \in O_P \text{ for some positive integer } m \},
\]

\[
N(P) = \{ a \in N \mid aN < b \subseteq N^*(N) \text{ for some } b \in N \mid P \}.
\]

Example 6.3.1. Consider the near-ring \((N, +, \cdot)\) defined on the Klein’s four group \((N, +)\) with \(N = \{0, a, b, c\} \) where \(\cdot \) is defined as follows (as per scheme 2,p.408 [35]).

\[
\begin{array}{ccc}
 \cdot & 0 & a & b & c \\
 0 & 0 & 0 & 0 & 0 \\
 a & 0 & 0 & a & a \\
 b & 0 & a & b & b \\
 c & 0 & a & c & c \\
\end{array}
\]
Clearly \(\{0, a\} \) is a strongly 0-prime ideal, since the ideals are \(\{0\} \), \(\{0, a\} \), and \(\{0, a, b, c\} \). Let \(P = \{0, a\} \). Then \(O\{P\} = O_P = \{0\} \) and \(\overline{O(P)} = \overline{O_P} = N\{P\} = \overline{N(P)} = N \) \(P = \overline{N_P} = P \).

Also we observe that \(N(N) = \{0, a\} = N^*(N) \). Therefore \(N \) is a NI near-ring.

Theorem 6.3.2. For a near-ring \(N \) the following are equivalent:

(i) \(N \) is an NI near-ring;

(ii) Every minimal strongly 0-prime ideal of \(N \) is completely prime.

Proof. (i) \(\Rightarrow \) (ii) : Let \(P \) be a minimal strongly 0-prime ideal of \(N \). Let \(a, b \in N \) be such that \(ab \in P \) and \(b \notin P \). We will show that \(a \in P \).

Case (i): Suppose that \((ab)^k = 0 \) for some \(k \). Then \((ab)^k \in N^*(N) \). Since \(N^*(N) \) is completely semiprime by Theorem 1.2.17, \(a^k b^k \in N^*(N) \). Since \(b \notin P \), there exist \(z_1, z_2, z_3, \ldots, z_{k-1} \in N \) such that \(bz_1 b z_2 \cdot \cdot \cdot z_{k-1} b \notin P \) and since \(N^*(N) \) has the IFP, \(a^k N(bz_1 b z_2 \cdot \cdot \cdot z_{k-1} b) \in N^*(N) \). Again by completely semiprimeness of \(N^*(N) \), we have \(aN b z_1 b z_2 \cdot \cdot \cdot z_{k-1} b \in N^*(N) \). Hence \(a \in N(P) \subseteq P \).

Case (ii): Suppose that \((ab)^k = 0 \) for all \(k > 0 \). Let \(S = \{(ab)^r / r \geq 1\} \), \(L = N \mid P \) and \(T = \{n \in N \mid n = 0, n = (ab)^{t_0} x_1 (ab)^{t_1} x_2 (ab)^{t_2} x_3 \cdot \cdot \cdot (ab)^{t_r}, \) where \(t_i \geq 1, i = 1, 2, \ldots, r - 1, t_i \geq 0, i = 0, n \) and \(x_i \in L \) for all \(i \} \). Clearly, \(S = \{0\} \) and \(L \subseteq T \). Let \(M = S \cup T \). We shall prove that \(M \) is an \(m \)-system in \(N \mid \{0\} \). Let \(x, y \in M \). If \(x, y \in S \), then \(xy \in S \subseteq M \). If \(x \in S \) and \(y \in T \), then let \(x = (ab)^q \) for some \(q > 0 \) and \(y = (ab)^{t_0} x_1 (ab)^{t_1} x_2 \cdot \cdot \cdot x_r (ab)^{t_r} \). Suppose that \(xy = 0 \). Since \(x_1, x_2 \in L \), there exist \(x_1' \in \langle x_1 \rangle \) and \(x_2' \in \langle x_2 \rangle \) such that \(x_1' x_2 \in L \). Since \(x_1' x_2, x_3 \in L \), there exist \(x_{12}' \in \langle x_1' x_2 \rangle \leq \langle x_1 \rangle < \langle x_2 \rangle \) and \(x_3' \in \langle x_3 \rangle \) such that \(x_1' x_2 x_3' \in L \).
\[x^r_{12}x^r_3 \in L. \] Continuing this process, we get \(x^r_{123 \ldots r-2}x^r_{r-1} \), \(x_r \in L \). Then there exist \(x^r_{123 \ldots r-1} \subseteq x^r_{123 \ldots r-2}x^r_{r-1} \rangle \langle \cdots \rangle \langle x_1 \rangle \langle x_2 \rangle \langle x_3 \rangle \cdots \langle x_{r-1} \rangle \rangle \) and \(x_r \in \langle x_r \rangle \) such that \(w = x^r_{123 \ldots r-1}x^r_r \in L \). Since \(xy = 0 \), \(xy \in N^*(N) \). Thus \((ab)^i(ab)^jx^i_1x^j_2 \cdots \langle x_r \rangle_0(ab)^{t_r} \in N^*(N) \). Since \(N^*(N) \) is completely semiprime ideal of \(N \), \(x_1x_2 \cdots \langle x_r \rangle_0(ab)^{t_0} \cdots + t_r \in N^*(N) \). Choose \(m = q + t_0 + \cdots + t_r \). Then \(x_1x_2 \cdots \langle x_r \rangle_0(ab)^m \in N^*(N) \). Since \(N^*(N) \) has the IFP, \(\langle x_1 \rangle \langle x_2 \rangle \cdots \langle x_r \rangle \langle (ab)^m \rangle \subseteq N^*(N) \). This implies that \(\langle \cdots \rangle \langle x_1 \rangle \langle x_2 \rangle \langle x_3 \rangle \cdots \langle x_{r-1} \rangle \rangle \langle x_r \rangle \langle (ab)^m \rangle \subseteq N^*(N) \) and so \(x^r_{123 \ldots r-1}x^r_r(ab)^m \in N^*(N) \). Hence \(w(ab)^m \in N^*(N) \), where \(w = x^r_{123 \ldots r-1}x^r_r \). Since \(N^*(N) \) is completely semiprime, \((ab)w^m \in N^*(N) \) and hence by case(i) \(a \in P \). Suppose that \(xy = 0 \). Then, clearly, from the definition of \(T \), \(xy \in T \subseteq M \). Similarly, we can show that if \(x, y \in T \) then \(xy \in T \subseteq M \). Thus we have \(M \) is an \(m \)-system in \(N \mid \{0\} \). By Proposition 1.2.15, there is a 0-prime ideal \(Q \) that is disjoint from \(M \) such that \(\langle ab \rangle \notin Q \) and \(Q \subseteq P \). Now we claim that \(Q \) is strongly 0-prime. Suppose \(I/Q \) is a nonzero nil ideal of \(N/Q \). Since \(Q \subseteq I, I \cap M = \{0\} \). If \((ab)^m \in I \) for some positive integer \(m \), then \((ab)^m + Q \) is a nilpotent element in \(N/Q \). Thus \((ab)^{mk} \in Q \) for some positive integer \(k \), which is a contradiction. So we choose \(x \in I \cap T \). Then \(x \in T \) implies \(0 = x^t \in T \) for any positive integer \(t \). Since \(x + Q \) is nilpotent in \(N/Q \), \(x^s \in Q \) for some positive integer \(s \) which is again a contradiction. Therefore, \(Q \) is a strongly 0-prime ideal of \(N \) such that \(\langle ab \rangle \notin Q \) and \(Q \subseteq P \). Since \(P \in mSSpec(N) \), \(Q = P \). Therefore \(\langle ab \rangle \notin P \) which is a contradiction and consequently \(a \in P \).

(ii) \(\Rightarrow \) (i): Let \(x^n = 0 \) for some positive integer \(n \). Then \(x^n \in P \) for all minimal strongly 0-prime ideal \(P \) of \(N \). Since every minimal strongly 0-prime
ideal of N is completely prime, $x \in P$. Thus $x \in \bigcap_{P \in \text{mSpec}(N)} P = N^\ast(N)$ by Lemma 1.2.16. Therefore, N is an NI near-ring.

The following definitions are critical to our characterization of minimal strongly 0-prime ideals.

Definition 6.3.3. Let $x, y \in N$ and n a positive integer. We say N satisfies

1) $(CZ1)$ condition if whenever $(xy)^m = 0$ then $x^m y^m = 0$, for some positive integer m.

2) $(CZ2)$ condition if whenever $(xy)^m = 0$ then $<x>^m N <y>^m = 0$, for some positive integer m.

Hong et al. [29] observed that the condition "$R/N \ast(R)$ is right weakly π-regular" in Proposition 18 cannot be replaced by the condition "R is right weakly π-regular " in the case of rings. But the following theorem shows that in the case of NI near-ring which satisfies $(CZ2)$ the condition "$N/N \ast(N)$ is left weakly π-regular" can be replaced by the condition "N is left weakly π-regular".

Theorem 6.3.4. Let N be an NI near-ring with unity satisfying $(CZ2)$. Then the following are equivalent:

(i) N is left weakly π-regular;

(ii) $N/N \ast(N)$ is left weakly π-regular;

(iii) Every strongly 0-prime ideal of N is maximal.

Proof. (i) \Rightarrow (ii) is clear.
(ii) \Rightarrow (iii) : Let $P \in S\text{Spec}(N)$. Then there exists a minimal strongly 0-prime ideal $I \subseteq P$ which is completely prime by Theorem 1.2.18. Let $\overline{N} = N/I$. Then \overline{N} is an integral left weakly π-regular near-ring. Let x be a non zero element in \overline{N}. There exists a positive integer k such that $x^k \subseteq <x^k > x^k$. Then $x^k = yx^k$, where $y \in <x^k >$. Therefore $x^k - yx^k = 0$ which implies that $(1 - y)x^k = 0$. Hence N/I is a simple near-ring. Thus I is a maximal ideal and so is P.

(iii) \Rightarrow (i) : Suppose that N is not left weakly π-regular. Then there exists an element $a \in N$ such that a is not left weakly π-regular. So we have $a^k \not\subseteq <a^k > a^k$ for every positive integer k. Hence $a^k = 0$ for all $k > 0$ and $a \not\subseteq <a > a$. Then $<a >$ is contained in a maximal ideal which is also a strongly 0-prime ideal. Let T be the union of all strongly 0-prime ideals which contain a. Let $S = N \setminus T$. Since every strongly 0-prime ideal is maximal, every strongly 0-prime ideal is minimal. Since every minimal strongly 0-prime ideal is completely prime, by Theorem 6.3.2, S is multiplicatively closed. Let $F = \{a^{i_0}b_1a^{i_1}b_2 \cdots b_na^{i_n} = 0/b_i \in S$ and $t_i \in \{0\} \cup N, \text{ where } N \text{ is the set of all positive integers}\}$. Let $L = \{a, a^2, \ldots \}$ and let $M = L \cup F$. Clearly, $S \subseteq F \subseteq M$. We shall claim that M is an m-system in $N \setminus \{0\}$. Let $x, y \in M$. Assume $x \in L$ and $y \in F$. Suppose that $xy = 0$. Take $x = a^i$ and $y = a^{i_0}b_1a^{i_1}b_2 \cdots b_na^{i_n}$. Since $xy = 0$, $a^i a^{i_0}b_1a^{i_1}b_2 \cdots b_na^{i_n} = 0$. Since $b_1, b_2 \in S$, there exist $b'_1 \subseteq <b_1 >$ and $b'_2 \subseteq <b_2 >$ such that $b'_1b'_2 \in S$. Since $b'_2, b_3 \in S$, there exist $b'_{12} \subseteq <b'_1b'_2 > \subseteq <b'_1 > <b'_2 >$ and $b'_3 \subseteq <b_3 >$ such that $b'_{12}b'_3 \subseteq S$. Continuing this process, we get $b'_{12} \cdots b'_{n-1}b'_n \in S$. Then there exist $b'_{12} \cdots b'_{n-1} \subseteq <b'_{12} \cdots b'_{n-2}b'_{n-1} > \subseteq \cdots <b'_1 > <b'_2 > <b'_3 > <b'_4 > <b'_5 > \cdots <b'_{n-1} >$ and $b'_n \subseteq <b_n >$ such that $b'_{12} \cdots b'_{n-1}b'_n \subseteq S$.

108
Since $xy = 0$ and $N^*(N)$ has the IFP, $a^{r+t_0+t_1+\cdots+t_n}b_1b_2\cdots b_n \in N^*(N)$. Choose $m = r + t_0 + t_1 + \cdots + t_n$. Then $a^mb_1b_2\cdots b_n \in N^*(N)$. Since $N^*(N)$ has the IFP, $< a^m > < b_1 > < b_2 > \cdots < b_n > \subseteq N^*(N)$ and so $a^mb'_1b'_2\cdots b'_{n-1}b'_n \in N^*(N)$. Hence $a^mw \in N^*(N)$, where $w = b'_1b'_2\cdots b'_{n-1}b'_n$. Since $N^*(N)$ is completely semiprime, $(wa)^m \in N^*(N)$ and hence $(wa)^k = 0$ for some k. Since N satisfies (CZ2), $< w^k > N < a^k > = 0$ for some k. By the definition of S and T, a strongly 0-prime ideal cannot contain both a^k and w^k. Hence

$$< a^k > + < w^k > = N.$$

So

$$< a^k > a^k + < w^k > a^k = Na^k.$$

Since $< w^k > N < a^k > = 0$, $< w^k > a^k = 0$. Therefore $a^k \in < a^k > a^k$. This shows that a is left weakly π-regular, a contradiction. Hence $0 = xy \in M$. Similarly, we can prove that if $x, y \in F$, then $0 = xy \in M$. Thus M is an $m-$system in $N | \{0\}$. By Proposition 1.2.15, there is a 0-prime ideal Q that is disjoint from M such that $a \notin Q$. As in the proof of Theorem 6.3.2, we obtain Q is a strongly 0-prime ideal of N. Since $a \notin Q$, $Q + < a > = N$. Hence $1 = b + c$ for some $b \in Q$ and $c \in < a >$. This gives $b \notin T$. So that $b \in S \subseteq F \subseteq M$ which implies that $Q \cap M = \emptyset$, a contradiction and consequently N is left weakly π-regular.

\[\square\]

Corollary 6.3.5. Let N be a 2-primal near-ring with unity satisfying condition (CZ2). Then the following are equivalent:

(i) N is left weakly π-regular;
(ii) $N/N^+(N)$ is left weakly π-regular;

(iii) $N/P_0(N)$ is left weakly π-regular;

(iv) Every 0-prime ideal of N is maximal;

(v) Every strongly 0-prime ideal of N is maximal.

Proof. (i) \Rightarrow (ii) and (ii) \Rightarrow (v) follows from Theorem 6.3.4.

(i) \Rightarrow (iii) is clear.

(iii) \Rightarrow (iv) : Let P be a 0-prime ideal of N. Then, by Corollary 6.2.4 and Theorem 6.2.6, there exists a minimal 0-prime ideal $X \subseteq P$ which is completely prime. Let $\overline{N} = N/X$. Then \overline{N} is an integral left weakly π-regular near-ring. Let a be a non-zero element in \overline{N}. There exists a positive integer k such that $a^k \in a^k < a^k$. Then $a^k = ya^k$ where $y \in a^k >$. Therefore $a^k - ya^k = 0$ which implies that $(1 - y^k)a^k = 0$. Hence N/X is a simple near-ring. Thus X is a maximal ideal and so is P.

(iv) \Rightarrow (v) : Since every strongly 0-prime ideal is 0-prime and every 0-prime ideal is maximal, every strongly 0-prime ideal is maximal. \(\square\)

We now characterize the minimal strongly 0-prime ideal P of N in terms of \overline{O}_P and $\overline{O}(P)$.

Theorem 6.3.6. Let N be an NI near-ring and P a strongly 0-prime ideal of N.

1. If N satisfies $(CZ1)$, then P is a minimal strongly 0-prime ideal of N if and only if $P = \overline{O}_P$.

2. If N satisfies $(CZ2)$, then P is a minimal strongly 0-prime ideal of N if and only if $P = \overline{O}(P)$.
Proof. 1) Let \(P \) be a minimal strongly 0-prime ideal of \(N \). Then by Theorem 6.3.2, \(P \) is completely prime and so \(S = N \mid P \) is an \(m \)-system. For \(a \in P \), if we suppose that \(a^k = 0 \) for some \(k > 0 \), then there is nothing to prove. Assume that \(a^k = 0 \) for all \(k > 0 \). Construct \(M \) as in the proof of Theorem 6.3.4. Let \(x, y \in M \). Then either \(xy = 0 \) or \(xy = 0 \). By the similar method to that of Theorem 6.3.4, \((aw)^k = 0 \) for some \(k, w \in N \mid P \) or \(Q \cap M = \emptyset \) for some strongly 0-prime ideal \(Q \). Suppose the latter is true. Then \(Q \subseteq P \). Since \(P \) is minimal strongly 0-prime, \(Q = P \). So that \(a \in Q \) and hence \(Q \cap M = \emptyset \), a contradiction. Thus \((aw)^k = 0 \) for some \(k > 0 \). Since \(N \) satisfies (CZ1), \(a^q w^q = 0 \) for some \(q > 0 \). Hence \(a^q \in O_P \), because \(w^q \in S \) and consequently \(a \in \overline{O}_P \). Hence \(P \subseteq \overline{O}_P \).

On the other hand, let \(x \in \overline{O}_P \). Then there exist a positive integer \(n \) and \(s \in N \mid P \) such that \(x^n s = 0 \) and \(x^n s \in N^*(N) \). Since \(N \) is NI, \(N^*(N) \) is completely semiprime and therefore we obtain \(xs \in N^*(N) \). Since \(N^*(N) \) has the IFP, \(xNs \subseteq N^*(N) \subseteq P \). Since \(P \) is strongly 0-prime, \(x \in P \). Therefore \(\overline{O}_P \subseteq P \). Thus \(\overline{O}_P = P \).

Conversely, assume that \(\overline{O}_P = P \). We have to show that \(P \) is a minimal strongly 0-prime ideal of \(N \). Suppose that there is a strongly 0-prime ideal \(Q \) of \(N \) such that \(Q \subseteq P \). Then \(P = \overline{O}_P \subseteq \overline{O}_Q \subseteq Q \). So that \(P = Q \). Therefore, \(P \) is a minimal strongly 0-prime ideal of \(N \).

2) Let \(P \) be a minimal strongly 0-prime ideal of \(N \) and let \(a \in P \). By a similar method used in part (1), we obtain \((aw)^k = 0 \) for some \(k > 0 \) and \(w \in N \mid P \). Since \(N \) satisfies (CZ2), \(< a^q > N < w^q > = 0 \) for some \(q > 0 \). Since \(P \) is minimal strongly 0-prime, \(P \) is completely prime by Theorem 6.3.2. Hence \(w^q \in N \mid P \) and so that \(a^q \in O(P) \) and consequently \(a \in \overline{O}(P) \).
the reverse inclusion, let \(x \in \mathcal{O}(P)\). Then \(x^n N <s> = 0\) for some \(n > 0\) and \(s \in N \mid P\). Hence \(x^n N <s> \subseteq N^*(N)\). Since \(N^*(N)\) is completely semiprime, \(xN <s> \subseteq N^*(N) \subseteq P\). Since \(P\) is strongly 0-prime, \(x \in P\). Therefore \(\overline{\mathcal{O}(P)} \subseteq P\). Thus \(P = \overline{\mathcal{O}(P)}\). The converse is similar to the converse of part (1).

\[\square\]

Corollary 6.3.7. Let \(N\) be a near-ring with unity which satisfies the condition (CZ1). Then \(N\) is NI if and only if \(P = \overline{\mathcal{O}_P}\) for every minimal strongly 0-prime ideal \(P\) of \(N\).

Proof. Suppose that \(P = \overline{\mathcal{O}_P}\) for every minimal strongly 0-prime ideal \(P\) of \(N\). Then

\[
N^*(N) = P \quad P = \overline{\mathcal{O}_P}
\]

Let \(x^n = 0\) for some \(n > 0\). Then \(x^n \in \mathcal{O}_P\) for all \(P \in \mathfrak{mSSpec}(N)\). This implies that \(x \in N^*(N)\). Thus \(N\) is NI. The converse follows from Theorem 6.3.6.

\[\square\]