LIST OF ILLUSTRATIONS

<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Potential mechanisms for hypoandrogenism and erectile dysfunction in obese males.</td>
<td>47</td>
</tr>
<tr>
<td>2</td>
<td>Etiology of oxidative stress which results in nonfunctional spermatozoa and infertility.</td>
<td>47</td>
</tr>
<tr>
<td>3</td>
<td>The hypothalamic-pituitary axis and the genes involved in different levels leading to hypogonadotrophic hypogonadism in humans.</td>
<td>48</td>
</tr>
<tr>
<td>4</td>
<td>Inflammatory pathways that induce oxidative stress in obesity. Adipokine levels increase, indirectly causing ROS formation via several intracellular signaling pathways and insulin receptor impairment. Leukocyte infiltration causes enzymatic formation of ROS. Both pathways generate ROS and oxidative damage. TNF-a, tumor necrosis factor a; IL-6, interleukin-6; CRP, C-reactive protein; oxLDL, oxidized low-density lipoprotein; 4 HNE, 4-hydroxynenal; MDA, malondialdehyde.</td>
<td>49</td>
</tr>
<tr>
<td>5</td>
<td>Location and structure of human JHDM2A with exons and intron. The numbers above the boxes indicate size of the exons in base pairs.</td>
<td>50</td>
</tr>
<tr>
<td>6</td>
<td>Jhdm2a knockout mouse (KO; left) exhibits obese phenotype (Okada et al., 2010).</td>
<td>66</td>
</tr>
<tr>
<td>7</td>
<td>Summary of molecular events occurring in Jhdm2a knockout mice.</td>
<td>67</td>
</tr>
<tr>
<td>8</td>
<td>Standard symbols used to construct a pedigree according to</td>
<td>101</td>
</tr>
</tbody>
</table>
9 Scheme of ELISA protocol used to assay of IL-6 levels according to Ray Biotech Catalog Number: ELH-IL6-001.

10 Scheme of ELISA protocol used to assay of sperm PRM1 levels according to Nova lifetech Science Co.Ltd. Catalog No: E1407h.

11 Age-wise distribution of 250 subjects with different condition and 100 controls.

12 Distribution of obese males with respect to Body Mass Index (BMI).

13 Distribution of different infertility conditions among 200 obese and non-obese infertile subjects.

14 Pedigree analysis of 100 non-obese infertile cases and 100 controls in Mysore.

15 Pedigree analysis of 50 obese fertile cases and 100 controls in Mysore.

16 Pedigree analysis of 100 obese infertile cases and 100 controls in Mysore.
Proband consanguinity; BPR.PBCON= Both parental and proband consanguinity).

17 Representative pedigrees of 250 families with male obesity/ and infertility in Mysore. A: Consanguineous non-obese infertility, B: Obese infertility, C: Obesity.

The Roman number in the left side of the figure indicates the number of generation. The Arabic number below the symbol denotes the number of individual in the generation. The arrow directed to the filled symbol represents the proband.

18 Scatter plot showing a significant positive correlation \((r=0.457, p<0.001) \) between seminal ROS concentration and BMI of all participants.

19 Scatter plot showing a significant positive correlation \((r=0.372, p<0.001) \) between seminal ROS concentration and Lipid peroxidation (MDA concentration) of all participants.

20 Scatter plot showing a significant positive correlation \((r=0.475, p<0.001) \) between seminal IL-6 concentration and BMI of all participants.

21 Scatter plot showing a significant negative correlation \((r=-0.359, p<0.001) \) between seminal IL-6 concentration and sperm viability of all participants.

22 Scatter plot showing a significant positive correlation \((r=0.328, p<0.001) \) between seminal IL-6 concentration and Lipid peroxidation (MDA) of all participants.

23 Scatter plot showing a significant negative correlation \((r=-0.294, p<0.001) \) between seminal IL-6 concentration and sperm viability of all participants.
p<0.010) between sperm PRM1 concentration and BMI of all participants.

24 Scatter plot showing a significant positive correlation (r=0.442, p<0.010) between sperm PRM1 and sperm progressive motility of all participants.

25 Scatter plot showing a significant positive correlation (r=0.490, p<0.010) between sperm PRM1 and percentage of sperm normal morphology of all participants.

26 Scatter plot showing a significant positive correlation (r=0.375, p<0.010) between sperm PRM1 and sperm viability of all participants.

27 Scatter plot showing a significant negative correlation (r=-0.285, p<0.010) between sperm nuclear chromatin decondensation (NCD) of the spermatozoa and BMI of all participants.

28 A: Gradient PCR done for exon 23 primer set (amplicon size 136bp) from 58°C to 62°C, B: Gradient PCR done for exon 24 (amplicon size 160bp) and 25 primer (amplicon size 192bp) from 58°C to 60°C.

29 Result of High Resolution Melting analysis (HRM) for exon 25 of JHDM2A in cases and controls.

30 Multiple DNA sequences alignment of the variants obtained from high resolution melting analysis (HRM).

(C: Control, OBF: Obese fertile, OBIF: Obese infertile, NOI: Non-obese infertile.)

31 Multiple amino acid sequence alignment of all the variants.
(C: Control, OBF: Obese fertile, OBIF: Obese infertile, NOI: Non-obese infertile.)

32 Details of the multiple amino acid sequence alignment of the variants.
(C: Control, OBF: Obese fertile, OBIF: Obese infertile, NOI: Non-obese infertile.)

33 Multiple amino acid sequence alignment of the variants C-7, OBF-15, OBIF-32, OBIF-34, OBIF-29, OBIF-32.
(C: Control, OBF: Obese fertile, OBIF: Obese infertile.)

34 Details of the multiple amino acid sequence alignment of the variants C-7, OBF-15, OBIF-32, OBIF-34, OBIF-29, OBIF-32.
(C: Control, OBF: Obese fertile, OBIF: Obese infertile.)

35 A. Multiple amino acid sequence alignment of the variants C-6, OBF-20, NOI-35. B. Details of the multiple amino acid sequence alignment of the variants C-6, OBF-20, NOI-35. (C: Control, OBF: Obese fertile, NOI: Non-obese infertile.)

36 A. Multiple amino acid sequence alignment of the variants C-5 (Control-5). B. Details of the multiple amino acid sequence alignment of the variants C-6.

37 A. Multiple amino acid sequence alignment of the variants OBF-33 (Obese fertile-33). B. Details of the multiple amino acid sequence alignment of the variants OBF-33.

Predicted protein 3D structure of the exon 25 variants. (C: Control, OBF: Obese fertile, OBIF: Obese infertile, NOI: Non-obese infertile.) The red arrows indicate the variation and the white arrows indicate the similarity in the α–helix and β-strands in comparison with the original exon 25 protein structure.

Obesity

Obesity is a medical condition in which excess body fat has accumulated to the extent that it may have an adverse effect on health, leading to reduced life