CHAPTER III

ON OPERATORS OF ASCENT AND DESCENT 0 OR 1

In this chapter, we study operators in the class \mathcal{A} whose descent is also 0 or 1. Since the condition that an operator should be of ascent 0 or 1 is rather very general, it is natural to impose certain further restrictions on operators in the class \mathcal{A}, so as to obtain stronger results. An operator may belong to \mathcal{A} without having finite descent. An example is provided by the unilateral shift U defined on the space l^2 of square-summable complex sequences by $U(x_0, x_1, x_2, \ldots) = (0, x_0, x_1, x_2, \ldots)$. Since U is isometric, $N(U) = N(U^2) = (0)$, so that $U \in \mathcal{A}$. But since $R(U^2)$ is a proper subspace of $R(U)$, the descent of U is not 0 or 1, and hence by Theorem 5.41-E of Taylor [47], the descent is not finite.

Although the condition for an operator in \mathcal{A} to have
descent 0 or 1 may appear heavy, our first theorem in this chapter justifies the study of such operators in the general case when X is not finite-dimensional.

Theorem 12. Let \(\dim X < \infty \), then \(T \in A \) if and only if \(T \) is of descent 0 or 1.

Proof. It is clear that every operator \(T \) on a finite-dimensional space \(X \) is a Fredholm operator of index zero. Indeed, \(R(T) \), being finite-dimensional, is closed and \(n(T) \) and \(d(T) \) are both finite. Also the relations \(\dim X = \dim N(T) + \dim R(T) \) and \(\dim X = \dim R(T) + \dim R(T)^- \) yield \(n(T) = d(T) \). It now follows from Theorem 4.5(c) and (d) of Taylor [48] that \(T \in A \) if and only if \(s(T) = 0 \) or 1.

The proof of Theorem 12 depends on the fact that in a finite-dimensional space, every operator is a Fredholm operator of index zero. Since not every operator is Fredholm if \(X \) is not finite-dimensional, it is natural to ask for conditions under which an operator is a Fredholm operator of index zero. One such condition is given in the following

Theorem 13. Let \(T \in A \) and \(s(T) \) be finite. Then \(T \) is a Fredholm operator of index zero if and only if there exists an operator \(A \) such that \(AT - I \) is compact.
We shall show this theorem follows as a consequence of the following lemma which is contained in [18, Theorem 1.1].

Lemma 13.1. The following conditions on an operator T are equivalent:

(a) Either $R(T)$ is not closed or $N(T)$ is not finite-dimensional.

(b) There cannot exist any operator A such that $AT - I$ is compact.

Proof of Theorem 13. It will be shown in Theorem 17 that if $T \in \mathcal{A}$ and $\delta(T)$ is finite, then $R(T)$ is closed. Thus if $AT - I$ is compact for some operator A, then by Lemma 13.1, it follows that $n(T)$ is finite. But then by Corollary 4.4 of Taylor [48], $d(T)$ is also finite and in fact, $n(T) = d(T)$. Conversely, if T is a Fredholm operator of index zero, then again in virtue of the Lemma, the finiteness of $n(T)$ and the closedness of $R(T)$ yield an operator A such that $AT - I$ is compact.

As was seen at the beginning of this chapter, an operator may belong to \mathcal{A} without having finite descent. In our next three theorems, we discuss conditions under which an operator in \mathcal{A} should be of descent 0 or 1.
THEOREM 14. Let X be reflexive. If T is an operator of ascent 0 or 1, then $R(T^*) = R(T^{*2})$.

Consequently, if $X = H$, a Hilbert space, then $T \in \mathcal{A}$ if and only if $R(T^*) = R(T^{*2})$.

PROOF. Since X is reflexive, the relation $(N^*)^\perp = N^*$ holds for any subspace N^* of X^*.

[18, Theorem II.3.5]. Also $R(T^*) = (N^*)^\perp$ for any operator T. [18, Theorem II.3.8]. Thus

$$R(T^*) = (N^*)^\perp = (N^{T^2})^\perp = (R(T^{*2}))^\perp = R(T^{*2}).$$

Since a Hilbert space is reflexive, it follows in virtue of Theorem 1 (Chapter I) that $T \in \mathcal{A}$ if and only if $R(T^*) = R(T^{*2})$.

For any operator T, $R(T)$ is closed if and only if $R(T^*)$ is closed [18, Theorem IV.1.2]. Also T^2 is Fredholm whenever T is [18, Theorem IV.2.7]. This leads to the following

COROLLARY 14.1. Let T be a Fredholm operator. Then $T \in \mathcal{A}$ if and only if T^* is of descent 0 or 1.

THEOREM 15. (i) If T is an operator such that T^* is of ascent 0 or 1, then $R(T) = R(T^2)$. If, in particular, T is Fredholm, then $\delta(T) = 0$ or 1.
(ii) Let T be a Fredholm operator of index zero. Then $T \in \mathcal{A}$ if and only if $\delta(T) = 0$ or 1.

Proof. (i) Since $R(T)^\perp = R(T_\perp) = N(T^*)$ by [18, Theorem II.3.7], we obtain $R(T) = \frac{1}{2}(R(T)^\perp) = \frac{1}{2}N(T^*) = \frac{1}{2}N(T^2) = \frac{1}{2}(R(T^2)^\perp) = R(T^2)$. If, now, T is Fredholm, then $R(T)$ and $R(T^2)$ are both closed and we are done.

(ii) Since $n(T)$ and $d(T)$ are finite and equal, invoking Theorem 4.5(c) and (d) of [48], it follows that $T \in \mathcal{A}$ if and only if $\delta(T)$ is 0 or 1.

As an immediate consequence we obtain the following

Corollary 15.1. If T and T^* have both ascent (or descent) equal to 0 or 1, then $n(T) = n(T^2)$ and $d(T) = d(T^2)$. If, in addition, T is a Fredholm operator of index zero, then all the four quantities $n(T)$, $n(T^2)$, $d(T)$, and $d(T^2)$ are equal.

Our next theorem gives a necessary and sufficient condition that a normal operator should be of descent 0 or 1.

Theorem 16. Let T be a normal operator on H. T is of descent 0 or 1 if and only if T^*T is of descent 0 or 1.
PROOF. It has been shown in [12, Theorem 2.2] that for any operator A, $R(A) = R((AA^*)^{1/2})$. This fact, together with our hypothesis yields $R(T^2) = R(T^2T^2)^{1/2} = R(T^2T) = R((T^*T)^2) = R((T^4)^{1/2}) = R(T^4)$. Since $R(T^4) \subset R(T^3) \subset R(T^2)$, it follows that $R(T^2) = R(T^3)$. Thus $\delta(T) \leq 2$. From Theorem 5.41-E of Taylor [47] it follows that $\delta(T) = \alpha(T) = 0$ or 1. Conversely if $\delta(T) = 0$ or 1, then clearly $R(T^2) = R(T^4)$. By another application of [12, Theorem 2.2] we obtain $R(T^*T) = R((T^*T)^2)$. This completes the proof.

Remark. The above theorem does not remain true for a non-normal operator even if it is hyponormal. In fact, if U is the unilateral shift on the space l^2, then U is isometric so that $\alpha(U) = 0$. Also $U^*U = I$ so that $\delta(U^*U) = \delta(I) = 0$; but the descent of U is not finite.

THEOREM 17. Let $T \in \mathcal{A}$ and $\delta(T)$ be finite. Then $R(T)$ is closed.

PROOF. By our hypothesis and Theorem 5.41-G of Taylor [47], it follows that $\alpha(T) = \delta(T) = 0$ or 1 and that $I = N(T) \supset R(T)$. It has been proved in
that if \(N \) is a closed subspace of \(X \) such that \(R(T) \oplus N \) is closed, then \(R(T) \) is closed. Since \(N(T) \) is always closed, the closedness of \(R(T) \) follows.

COROLLARY 17.1. Let \(T \) be an operator such that \(T - \lambda I \in \mathcal{A} \) for all scalars \(\lambda \) and \(\delta(T - \lambda I) \) be finite for all \(\lambda \neq 0 \). If one of the quantities \(n(T - \lambda I) \) and \(d(T - \lambda I) \) is finite, then \(T \) is a Riesz operator.

PROOF. Caradus [8] has characterized Riesz operators \(T \) by the condition that for each non-zero scalar \(\lambda \), \(T - \lambda I \) should have finite ascent, descent, nullity, defect and closed defect. By Theorem 17, \(R(T - \lambda I) \) is closed, so that \(i(T - \lambda I) = \delta(T - \lambda I) \) for each \(\lambda \neq 0 \). The corollary follows now by the above mentioned characterization of Caradus.

Ch. Constantin [10] has shown that any restriction-normaloid Riesz operator is normal. This leads to the following

COROLLARY 17.2. If \(T \) is a restriction-normaloid operator satisfying the conditions of Corollary 17.1, then \(T \) is normal.

In the following theorem we obtain a relation between
operators in the class \mathcal{A} and commutators of operators.

THEOREM 18. Let T be an operator of ascent 0 or 1 on H. If $\delta(T)$ is not finite, then T is a commutator.

PROOF: Assume, to the contrary, that T is not a commutator. Then by the well known Brown-Pearcy characterization of commutators [6], T can be expressed in the form $\lambda + C$ where λ is a non-zero scalar and C is compact. But then by Theorem 5.5-E of [47], we obtain $\sigma(T) = \delta(T)$. This contradiction proves the theorem.

It was proved in [37, Theorem 3] that if $T \in \mathcal{A}$ and $R(T)$ is not closed, then T is a commutator. This result is immediate in virtue of the following stronger result.

THEOREM 19. If T is an operator on H whose range is not closed then T is a commutator.

PROOF. Berberian [3] has shown that if $0 \in w(T)$, $w(T)$ being the Weyl's spectrum of T, then T is a commutator. Thus it suffices to show that if $R(T)$ is not closed then $0 \in w(T)$. In fact, if $R(T)$ is not closed then clearly T is not a Fredholm operator of index zero. The result now follows from Schechter's characterization of $w(T)$.
as the set \(w(T) = \{ \lambda | T - \lambda I \text{ is not a Fredholm operator of index zero} \} \).

We obtain a corresponding result for self-commutators in the following

Theorem 20. If \(T \) is a self-adjoint operator on a separable Hilbert space \(H \) such that \(R(T) \) is not closed, then \(T \) is a self-commutator.

Proof. Radjavi [33] has characterized self-commutators on a separable Hilbert space \(H \) as follows: An operator \(T \) on \(H \) is a self-commutator if and only if \(T \) cannot be expressed as \(\lambda + C \) where \(\lambda \) is a non-zero positive scalar and \(C \), a compact operator. If, now, \(T \) is not a self-commutator, then by Radjavi's characterization, there exists a non-zero positive number \(\lambda \) and a compact operator \(C \) such that \(T = \lambda + C \). This implies in virtue of [47, Theorem 55.E] and Theorem 17 that \(R(T) \) is closed, a contradiction.

In the following theorems we discuss for an operator \(T \) of descent (ascent) 0 or 1, on \(H \), conditions under which the compactness of some power of \(T \) implies that of \(T \).

Theorem 21. Let \(T \in \mathcal{A} \) and \(\delta(T) \) be finite. If
T^k is compact for some k, then T is finite-dimensional.

Proof. It is clear from the hypothesis that T^k has ascent and descent equal to 0 or 1 and that

$$R(T^k) = R(T).$$

Further, if the range of a compact operator is closed, then it is finite-dimensional [18, Theorem III.1.12]. Thus it only remains to observe that, in virtue of Theorem 17 and the compactness of T^k, $R(T^k)$ is finite-dimensional.

We obtain a more general result in the following

Theorem 22. Let $T \in c^f$ and $R(T^k)$ be closed for some k. If T^k is compact then T is finite-dimensional.

Proof. We first observe that an operator A is finite-dimensional (compact) if and only if A^* is finite-dimensional (compact). [47, Theorem 5.5-B]. Further, if A is a compact operator with closed range, then A is finite-dimensional. Since $N(T^j)$ are equal for all $j \geq 1$ and $R(T^{*k})$ is closed it follows that

$$R(T^*) = R(T^{*2}) = \ldots = R(T^{*k}) = R(T^{*k}).$$

Also T^{*k} is finite-dimensional, being a compact operator with closed range; so that
\[\dim R(T^*) \leq \dim R(T^*) = \dim R(T^{*k}) < \infty. \]

This proves that \(T^* \), and hence \(T \), is finite-dimensional.

Remarks. 1. As was already observed, for the unilateral shift \(U \) the range of every power of \(U \) is closed, but the descent of \(U \) is not finite. Thus Theorem 22 is a proper generalization of Theorem 21.

2. It has been proved in [12, Theorem 2.5] that if \(V \) is a linear subspace of \(H \), then any operator \(A \) on \(H \) with \(R(A) \subseteq V \) is compact if and only if \(V \) contains no closed infinite-dimensional subspace of \(H \). From this result we deduce that if \(T \) is an operator of descent 0 or 1 and \(T^k \) is compact, then \(T \) is finite-dimensional. In fact since

\[R(T) = R(T^2) = \ldots = R(T^k) \subseteq R(T^k) = V, \]

and \(T^k \) is compact we obtain \(\dim R(T) = \dim R(T^k) \leq \dim R(T^k) < \infty \).