REFERENCES

A more general form of Reynold equation: application to rough surface, WEAR, 27, p. 345-357.

Axial pinch effect on the squeeze film action between circular plates, WEAR, 45, p. 391-393.

Optimum profile for the magnetohydrodynamic parallel plate porous slider, WEAR, 51, p. 49-55.

Hydromagnetic lubrication equation for an anisotropic porous slider with slip velocity WEAR, 61, p. 43-48.

Squeeze film behaviour in porous annular discs lubricated with magnetic fluid, WEAR, 151, p. 123.

33. Cameron, A. (1966)

34. Cameron, A. (1971)
Basic lubrication theory, Longmans, London.

35. Chandrasekhara, B. C. (1975)

41. Christensen, H. and Tonder, K.C. (1972.a)
The hydrodynamic lubrication of rough journal bearings, ASME, Paper No.72.Lub. 3

42. Christensen, H. and Tonder, K.C. (1972.b)

44. Citron, S.J. (1962)

45. Constantinescu, V.N. (1968)
Lubrication in turbulent regime, U.S.Atomic Energy commission

Gas lubrication, ASME.

47. Cusano, C.(1972)

The effect of variable permeability on the performance characteristics of porous bearings, WEAR, 23, p.55.

49. Davis, M.C. (1963)
The generalization of pressure between rough fluid lubricated moving, deformable surfaces, lubrication Engg., p.246.

50. Dowson, D. (1962)
51. Dowson, D. (1973)

52. Dowson, D. (1979)

53. Dowson, D. and Higginson, G.R. (1966)
Elastohydrodynamic lubrication, Pergamon, London.

54. Dowson, D. and Whomes, T.L. (1971)
The effect of surface roughness upon the lubrication of rigid cylindrical rollers, WEAR, 18, p.129-133.

Magnetohydrodynamic pressurization in liquid metal lubrication, WEAR, 5, P.198.

57. Ene, H.I. (1969)

58. Fuller, D.D. (1956)
Theory and Practice of Lubrication for Engineers, John Wiley and Sons INC, New York.

Stiffness and damping characteristics of hydrostatic multi-recess oil journal bearings, Int. J. Machine Tool Design and Research, 18, p. 139-151

Design of multi-recess hydrostatic oil journal bearing, Tribology International, 3, P.73-78
Effect of velocity slip at a porous boundary on the performance of an incompressible porous bearing, NASA, D. 6181.

Parallel surface squeeze films: the effect of the variation of viscosity with temperature and pressure, ASME F59, p.375

Analysis of dynamic characteristics of hydrodynamic journal bearing with isotropic roughness effects, WEAR 167, 1, p.173-179.

66. Gupta, J.L. and Bhat, M.V. (1975)
An inclined porous slider bearing with a transverse magnetic field, WEAR, 55, p.359-367

An analysis of the squeeze film between porous annular curved plates, Jour. of Math. and Phy. Sc., 14, No.6, p.611.

Behaviour of a squeeze film between porous curved circular plates with a concentric circular pocket, Sci. and Engg., 35, 3-4, p.43
Axial current induced pinch effect on the squeeze film behaviour for porous annular discs, J. Lubr. Tech. Trans. ASME, 97 (1) p.130-133.

75. Halton, J.H. (1958)
Engineering, 186.

76. Hamrock, B.J. (1994)

77. Hardy, W. B. and Doubledy, I (1922.a)

78. Hardy, W. B. and Doubledy, I (1922.b)

80. Hingu, J.V. (1976)
The effect of axial current induced pinch on the squeeze film behaviour of porous circular disks, WEAR, 40, p.79-184.
Effect of axial current induced pinch on the lubricant inertia for a squeeze film between circular disks, WEAR, 48, P.317-322.

82. Hingu, J.V. (1979)
On some theoretical studies on hydrodynamic and hydromagnetic lubrication, Ph. D. dissertation, Sardar Patel University, Vallabh Vidyanagar.

83. Hughes, W.F. (1963.a)
The magnetohydrodynamic finite step slider bearing, Jour. Basic Engg., Trans. ASME, series D. 85, P.129.

84. Hughes, W.F. (1963.b)
The magnetohydrodynamic inclined slider bearing with transverse magnetic field, WEAR, 6. p.129.

86. Jackson, J.D. (1963)

87. Jenkins, J.T. (1972)
A magnetic fluid, Mech. and Analysis, 46, NO.1.

88. Kulkarni, S.V. and Vinay Kumar (1975)

Turbulent hybrid journal bearing with porous bush - A steady state performance, WEAR, 154, p. 23-35.

91. Kuzma, D.C. (1963)

92. Kuzma, D.C. (1964)

93. Kuzma, D.C. (1965)
The magnetohydrodynamic parallel plate slider bearing, J. Basic Engg., Trans. ASME, 87, p. 778-780.

Turbulence and inertia effects in bearings, Tribology, 81, P. 154-160.

96. Majumdar, B.C. (1986)
Introduction to tribology of bearings, A.H. Wheeler and Co.

Magnetohydrodynamic lubrication flow between parallel plates, J. Fluid Mech., 26, p. 537-543.

Lubrication its principles and practice, Blackie, London.

ASLE Trans., 28, p. 461.

Review of squeeze films, WEAR, 3, p. 245-263.

102. Moore, D.F. (1972)
The friction and lubrication of elastomers, Pergamon Press, New York.
103. Morgan, V.T. (1963)
The effect of porosity on some of the physical properties of powder metal components, Powder Metallurgy, 12, 72.

104. Morgan, V.T. and Cameron, A. (1957)

105. Murti, P.R.K. (1973)

107. Murti, P.R.K. (1975.a)

108. Murti, P.R.K. (1975.b)

109. (1969)
Contribution to fluid film lubrication, NASA SP 5058, NASA, Washington, D.C.

111. Osterle, F. and Saibel, E. (1958)
The effect of bearing deformation in slider bearing lubrication, ASLE Trans., 1, p.213-216.

Gas lubrication spherical bearing, Jour. of Basic Eng., Trans. ASME, 85, p.311-314
Hydromagnetic squeeze film with slip velocity between two porous annular disks, J.Lub. Tech., Trans. ASME. 97, p.644-647.

The hydromagnetic squeeze film between porous circular disks with velocity slip, WEAR, 58, p.275-281.

Behaviour of a hydromagnetic squeeze film between porous plates, WEAR, 56, p.327-339.

Hydrodynamic lubrication of a porous slider bearing with slip velocity, WEAR, 85, p.309-317

Hydromagnetic squeeze film behaviour in porous circular disks, WEAR, 49, p.239-246

120. Petrov, N. (1883)

121. Prakash, J. (1967)
Trans. ASME, Ser F, 89, p. 323.

Lubrication of a porous bearing with surface corrugations, Jour. Lub. Tech., Trans. ASME, 104, p.127-134
<table>
<thead>
<tr>
<th></th>
<th>Author(s) and Year</th>
<th>Title and Details</th>
</tr>
</thead>
</table>
133. Ramanaiah, G. (1968)
Elastic considerations in hydrodynamic squeeze films, Progress of Maths, 2, p. 65-70

Analysis of orifice and capillary - compensated hydrostatic journal bearings, Lubrication Engineering, 13, p.28-37

135. Reynolds, O. (1886)

136. Richardson, S. (1971)

Correlational aspects of the viscosity temperature - pressure relationship of lubricating oils, Druk, V.R.B., Groingen, Netherlands.

139. Rouleau, W.T. (1963)

140. Saffman, P.G. (1971)

The fluid mechanics of lubrication, Annual review of fluid mechanics, 5, p.185-212
Nonlaminar behaviour in bearings: A critical
review of the literature; Jour. Lub. Tech.,
Trans. ASME, 96, p.174-181

143. Shukla, J.B. (1963)
Principles of hydromagnetic lubrication, J.
Phy. Soc. Japan, 18, P.1086-1088

144. Shukla, J.B. (1965)
Hydromagnetic theory of squeeze films, J. Basic
Engg. Trans. ASME, 87, p. 142-144.

The optimum one-dimensional magnetohydrodynamic
slider bearing, J.Lub. Tech., Trans. ASME, 92,
p. 530-534

A theory of ferromagnetic lubrication, J.
Magnetism and Magnetic Materials, 65, p. 375-378

147. Shukla, J.B. and Prasad, R. (1965)
Hydromagnetic squeeze films between two
conducting surfaces, Jour. of Basic Engg, Trans.
ASME, Paper No.65, Lubs-6.

Sov. Physics, 24, 173.

149. Sinha, P.C. and Gupta, J.L. (1973)
Hydromagnetic squeeze films between porous
ASME., F. 95, P. 394-398

Hydromagnetic squeeze films between porous
annular disks, Jour. Maths. Phys. Science, 8,
p. 413-422

The generalized equation of Reynolds, C.R.Acad.
Sc. (U.S.S.R.) (Doklady) 54, p. 205-206

152. Smith, M.I. and Fuller, D.D. (1956)
Journal bearing operation at super laminar
speed, J. Basic Engg. Trans. ASME, 78, P.469

154. Sneck, H.J. (1968)

155. Snyder, W.T. (1962)
The magnetohydrodynamic slider bearing, Jour. Basic Engg. Trans. ASME., 84 p. 197-204

156. Sowmyan, T. and Raman, R. (1977)
Theoretical performance characteristics of spherical sintered bearing, WEAR, 43, p. 293-300.

158. Srinivasan, Uma (1977)

159. Stefan, J. (1874)
Ver suche Uber Scheinbare adhasion, sitzung sber. math: Naturwiss, K1, Bayer, Akad. Wiss Muchen, 69, p. 713.

Tribology - Friction - Lubrication and Wear, Hemispherical Pub. Corp.,, Washington

Turbulent lubrication theory - applications to design, Jour. Lub. Tech. Trans. ASME, 96, p.36

164. Ting, L.L. (1972)

165. Ting, L.L. (1975)
Engagement behaviour of lubricated porous annular disks, WEAR, 34, p.159-182.

166. Tipei, N., (1962)
Theory of lubrication, Stanford Univ. Press California.

Slider bearings, R.P.R. Academy Press.

169. Tonder, K. (1977)

170. Tonder, K. and Christensen, H. (1972.a)

171. Tonder, K. and Christensen, H. (1972.b)
Lubrication of cylindrical rollers with surface configurations, WEAR, 20, P.309-315.

172. Tower, B. (1883)

173. Tower, B. (1884)
174. Tower, B. (1885)

175. Tzeng, S.T. and Saibel, E. (1967.a)
Surface roughness effect on slider bearing lubrication, ASLE Trans., 10, p. 334-338.

177. Underwood, A.F. (1945)

Effect of velocity slip on porous walled squeeze films, WEAR, 29, p. 363-372.

180. Vinay Kumar (1978)
A lubrication equation including slip velocity for hydrodynamic porous bearings in the lower turbulent regime - a perturbation approach, WEAR, 51, p. 25-37.

181. Vinay Kumar (1980)
Porous metal bearings - a critical review, WEAR, 63, p. 271-287.

Behaviour of a squeeze film between curved circular plates with a concentric circular pocket, WEAR, 65, p. 35-38.

The load capacity of a squeeze film between curved porous rotating circular plates, WEAR, 65, p. 39-46.
The effect of rotational inertia on the squeeze film load between porous annular curved plates, WEAR, 79, p.235-240

185. Wilcock, D.F. (1950)
Turbulence in high speed journal bearings
J. Basic Engg. Trans. ASME, 72, p. 825.

186. Wright, V. E. (1969)
Lubrication and wear in joints, Lippincott Pub.

Squeeze film behaviour for porous annular disks, Jour. Lub. Tech., Trans. ASME, 92, p.593-596

188. Wu, H. (1971)
The squeeze film between rotating porous annular disks, WEAR, 18, P.461-470

An analysis of the squeeze film between porous rectangular plates, Jour. Lub. Tech.,94, p. 64-68

190. Wu, H. (1972.b)

An analysis of the engagement of wet clutch plates., WEAR, 24, p. 23

A review of porous squeeze films, WEAR, 47, p. 371-386

Theoretical analysis and experimental investigation of a porous bearing, Tribology International, 18, 1. P. 67-73