CONTENTS

<table>
<thead>
<tr>
<th>Chapter No.</th>
<th>Chapter Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>1-6</td>
</tr>
<tr>
<td>2</td>
<td>REVIEW OF LITERATURE</td>
<td>7-33</td>
</tr>
<tr>
<td>3</td>
<td>MATERIALS AND METHODS</td>
<td>34-53</td>
</tr>
<tr>
<td>4</td>
<td>RESULTS</td>
<td>54-116</td>
</tr>
<tr>
<td>5</td>
<td>DISCUSSION</td>
<td>117-136</td>
</tr>
<tr>
<td>6</td>
<td>SUMMARY AND CONCLUSION</td>
<td>137-142</td>
</tr>
<tr>
<td>7</td>
<td>REFERENCES</td>
<td>143-192</td>
</tr>
</tbody>
</table>
Table of Contents

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>List of Tables</td>
<td>i-ii</td>
</tr>
<tr>
<td></td>
<td>List of Figures</td>
<td>iii-iv</td>
</tr>
<tr>
<td></td>
<td>List of Plates</td>
<td>v</td>
</tr>
<tr>
<td></td>
<td>Abbreviations</td>
<td>vi</td>
</tr>
<tr>
<td></td>
<td>Chapter 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>INTRODUCTION</td>
<td>1-6</td>
</tr>
<tr>
<td></td>
<td>Chapter 2</td>
<td>7-33</td>
</tr>
<tr>
<td></td>
<td>2.1. Plant growth promoting rhizobacteria</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.2. Rhizosphere</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.3. Rhizosphere colonization</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.4. Plant-microbe interactions in the rhizosphere</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.5. Mechanism of plant growth promotion</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.5.1. Biological nitrogen fixation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.5.2. Solubilization of minerals present in the soil</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.5.2.1. Phosphorous solubilization</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.5.2.2. Zinc solubilization</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.5.2.3. Potassium solubilization</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.5.3. Phytohormone production</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.5.3.1. IAA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.5.3.2. Cytokinin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.5.3.3. Gibberellin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.5.3.4. Absisic acid</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.5.4. Biocontrol of plant diseases</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.5.4.1. Production of siderophore</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.5.4.2. Production of antibiotics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.5.4.3. Production of hydrogen cyanide</td>
<td></td>
</tr>
</tbody>
</table>
2.5.4.4. Secretion of lytic enzymes
2.5.4.5. Induction of systemic resistance
2.6. Production of ACC deaminase
2.7. Enhancement of growth of plants through Combination of mechanisms
2.8. Role of pgpr in alleviation of various types of stresses
2.9. Role of PGPR in Phytoremediation
2.10. Rhizoremediation
2.11. Approaches to develop PGPR
2.12. Use of PGPR on commercial scale
2.13. Future prospects and challenges

Chapter 3 Materials and Methods

3.1. Materials
3.1.1. Chemicals
3.1.2. Instrument
3.1.3. Media
3.2. Methods
3.2.1. Isolation of Rhizobacteria from
3.2.1.1. Soil sampling
3.2.1.2. Isolation on growth media
3.2.2. Screening of rhizobacterial isolates for PGP traits
3.2.2.1. Production of ammonia (Demutskaya and Kalinichenko, 2010)
3.2.2.2. Phosphate solubilization (Pikovskaya, 1948)
3.2.2.2.1. Quantitative estimation for Phosphate solubilisation
3.2.2.3. Effect of different concentration of TCP on Phosphorous solubilization
3.2.2.3.1. Determination of IAA Production
3.2.2.3.2. Effect of tryptophan concentration
3.2.2.4. Siderophore production
3.2.2.5. Antifungal assay
3.2.2.6. ACC deaminase activity
3.2.2.7. HCN production
3.2.2.8. Seed germination assay
3.2.3. Characterization of bacterial isolates
3.2.3.1. Morphological Characterization
3.2.3.1.1. Gram Staining
3.2.3.1.2. Endospore staining
3.2.3.1.3. Motility test
3.2.3.2. Biochemical characterization
3.2.3.2.1. Catalase test
3.2.3.2.2. Cytochrome oxidase test
3.2.3.2.3. Starch hydrolysis
3.2.3.2.4. Gelatin hydrolysis
3.2.3.2.5. Casein hydrolysis
3.2.3.2.6. Sugar Fermentation
3.2.3.2.7. Nitrate Reduction
3.2.3.2.8. Urease Test
3.2.3.2.9. Hydrogen sulphide production test
3.2.3.2.10. IMViC tests
3.2.3.2.10.1. Indole production
3.2.3.2.10.2. Methyl Red (MR) test
3.2.3.2.10.3. Voges Proskauer (VP) tests
3.2.3.2.10.4. Citrate utilization
3.2.3.3. Molecular Characterization of bacterial isolates
3.2.3.3.1. Isolation of total cell DNA from bacterial isolates
3.2.3.3.2. Genomic DNA extraction
3.2.3.3.3. Quantification through agarose gel electrophoresis
3.2.3.3.4. 16S rDNA PCR-Amplification of PGPR isolates

3.2.3.3.4.1. Primers

3.2.3.3.4.2. Procedure

3.2.3.3.4.3. Purification of amplified PCR product

3.2.3.3.4.4. Sequencing and Phylogenetic analysis

3.2.4. Optimization of cultural conditions for selected isolates

3.2.4.1. Growth under different temperature conditions

3.2.4.2. Growth under different pH conditions

3.2.4.3. Effect of various Carbon sources on growth

3.2.5. Optimization of cultural condition for Plant Growth Promoting Traits

3.2.6. Statistical analysis

Chapter 4 Results

4.1. Isolation of rhizobacteria

4.2. Screening of bacterial isolates for plant growth promoting properties

4.2.1. Ammonia production

4.2.2. Phosphorous solubiilization

4.2.3. IAA Production

4.2.4. Siderophore production

4.2.5. Antifungal activity

4.2.6. ACC deaminase activity

4.2.7. HCN production

4.2.8. Seed germination assay

4.3. Characterization of selected isolates

4.3.1. Morphological characteristics of selected isolates

4.3.1.1. Colony characteristics of selected isolates

4.3.1.2. Gram staining

4.3.1.3. Endospore formation
4.3.1.4. Motility test
4.3.2. Biochemical characterization of selected isolates
4.4. Molecular characterization of selected isolates
4.5. Optimization of cultural conditions for the growth of selected isolates
4.5.1. Effect of temperature
4.5.2. Effect of pH
4.5.3. Effect of carbon sources
4.5.4. Effect of nitrogen sources
4.6. Optimization of cultural conditions for PGP traits
4.6.1. IAA production
4.6.2. Phosphate solubilization
4.6.3. Siderophore Production

CHAPTER 5 DISCUSSION 117-136
5.1. Isolation
5.2. Screening
5.2.1. Ammonia production
5.2.2. Phosphorous solubilization
5.2.3. IAA production
5.2.4. Siderophore production
5.2.5. Antifungal activity
5.2.6. ACC deaminase activity
5.2.7. HCN production
5.2.8. Seed germination assay
5.3. Optimization of cultural conditions for selected isolates
5.3.1. Effect of temperature on growth
5.3.2. Effect of pH on growth
5.3.3. Effect of carbon source on growth
5.3.4. Effect of nitrogen source on growth
5.4. Optimization of cultural conditions of isolates for PGPR attributes

5.4.1. IAA production

5.4.2. Phosphorus solubilization

5.4.3. Siderophore production

Chapter 6 SUMMARY 137-142

6.1. Isolation

6.2. Screening for various plant growth promoting traits

6.3. Morphological, Biochemical and Molecular characterization of the selected isolates

6.4. Optimization of cultural conditions for selected isolates

6.5. Optimization of cultural conditions for PGPR attributes

Chapter 7 REFERENCES 143-192

APPENDIX i-viii

LIST OF PUBLICATIONS