In this chapter, we present some results pertaining to certain classes of operators on a Hilbert space H; viz. the class $(N;k)$, the class of hyponormal operators and that of operators of ascent and descent 0 or 1. We first prove that the class $(N;k)$ and the class of normaloid operators are uniformly closed and that the class of operators of ascent 0 or 1 is not closed in $B(H)$. We then discuss the similarity invariance of the class $(N;k)$. Lastly, we prove a result on the sum and product of two hyponormal operators.

Theorem 25. The class $(N;k)$ of operators is strongly (hence uniformly) closed on $B(H)$.

Proof. Let $\left\{ T_n \right\}_{n=1}^{\infty}$ be a sequence of operators of class $(N;k)$ and let $T \in B(H)$ such that $\|T_n x - T x\| \to 0$.

as \(n \to \infty \) for each \(x \in \mathcal{H} \). Then

\[
\| T_n^k x - T^k x \| \leq \| T_{n-1}^k + T_{n-2}^k + \ldots + T^k \| \cdot \| T_n x - T x \| \\
\to 0 \text{ as } n \to \infty .
\]

This gives

\[
\| T x \|_k = \| \lim_{n \to \infty} T_n^k x \|_k
\]

\[
= (\lim_{n \to \infty} \| T_n x \|_k)^k
\]

\[
= \lim_{n \to \infty} \| T_n x \|_k
\]

\[
\leq \lim_{n \to \infty} \| T_n^k x \|
\]

\[
= \| \lim_{n \to \infty} T_n^k x \|
\]

\[
= \| T^k x \|
\]

for all \(x \in \mathcal{H} \) with \(\| x \| = 1 \).

Since uniform convergence implies strong convergence,
the result follows.

We have seen that the class \((N; k) \) is properly
included in both the class \mathcal{A} and the class of all normaloid operators, which are mutually independent. The class $(N; k)$ has been just shown to be uniformly closed, while as we shall shortly see, the class \mathcal{A} is not closed. In this connection, it is interesting to have the following result for the class of normaloid operators.

Theorem 26. The class of normaloid operators is uniformly closed in $B(H)$.

Proof. An operator T is normaloid if and only if
\[\| T^n \| = \| T \|^n \] for each $n = 1, 2, 3, \ldots$. If \(\{ T_k \}_{k=1}^\infty \) is a sequence of normaloid operators such that \(\| T_k - T \| \to 0 \) as $k \to \infty$, then for any $n, n = 1, 2, 3, \ldots$,

\[
\| T^n \| = \| (\lim_{k \to \infty} T_k)^n \| \\
= \| \lim_{k \to \infty} T_k^n \| \\
= \lim_{k \to \infty} \| T_k^n \| \\
= \lim_{k \to \infty} \| T_k \|^n \\
= (\lim_{k \to \infty} \| T_k \|)^n
\]
Thus T is normaloid.

Next we ask whether the class \mathcal{A} is closed in $B(H)$. In this connection we prove the following

Theorem 27. The class of operators of ascent and descent 0 or 1 is not closed in $B(H)$. Consequently, the class \mathcal{A} is not closed even if $\dim H < \infty$.

Proof. We prove the theorem by producing two counter-examples. The first example is that of [20, Problem 85] and was suggested to the author by S.M. Patel.

(i) Let H be the Hilbert space of all the two-way square-summable sequences, with the orthonormal basis

$$\{ \ldots, e_2, e_1, e_0, e_1, e_2, \ldots \}$$

where

$$e_n = \{ \ldots, 0, 0, 1, 0, 0, \ldots \}$$

with 1 at the nth place and 0 elsewhere. Define A_k for each $k = 1, 2, 3, \ldots$, to be the weighted shift
\[A_k e_n = \begin{cases} e_{n+1} & \text{if } n \neq 0 \\ \left(\frac{1}{k} \right) e_{n+1} & \text{if } n = 0 \end{cases} \]

where we put \(\frac{1}{\infty} = 0 \). The sequence of weights of \(A_k \) is

\[\{ \ldots, 1, 1, (\frac{1}{k}), 1, 1, \ldots \} . \]

It can be seen that for each \(k < \infty \), \(A_k \) is invertible so that \(A_k \) is of ascent and descent 0 or 1. As \(k \to \infty \), \(\| A_k - A_\infty \| \to 0 \) where \(A_\infty \) is the weighted shift whose sequence of weights is

\[\{ \ldots, 1, 1, (0), 1, 1, \ldots \} . \]

Hence: \(A_\infty^2 e_{-1} = A_\infty (1e_0) = 0 \) whereas \(A_\infty e_{-1} = e_0 \neq 0 \), which shows that \(A_\infty \not\in \mathcal{B} \).

(ii) Let \(H \) be the two-dimensional Hilbert space and define \(T_n \) on \(H \) for each \(n = 1, 2, 3, \ldots \) by the matrix

\[T_n = \begin{bmatrix} 0 & \frac{1}{n} \\ 1 & 0 \end{bmatrix} . \]
If T is defined by

$$T = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$$

then $T_n \to T$ strongly (or uniformly), since for each n,

$$T_n(x,y) = (\frac{1}{n} y, x) \text{ for } (x,y) \in \mathcal{H} \text{ and } T(x,y) = (0, x)$$

so that

$$||T_n(x,y) - T(x,y)|| = ||(\frac{1}{n} y, 0)|| = \frac{1}{n} ||y||$$

which tends to 0 as $n \to \infty$. For each n, T_n is one-to-one, for

$$T_n(x,y) = 0 \Rightarrow (\frac{1}{n} y, x) = 0 \Rightarrow x = 0 = y,$$

so that $T_n \in \mathcal{A}$. Since $\dim \mathcal{H} < \infty$, T_n's are also of descent 0 or 1. However $T \notin \mathcal{A}$, since $T^2 = 0$ whereas $T \neq 0$. This example shows that the class \mathcal{A} is not closed even if \mathcal{H} is finite-dimensional.

It was shown in Theorem 4 that \mathcal{A} is similarity invariant. Although we are unable to claim that the class $(\mathcal{N};x)$ is also similarity invariant, we can however show that this class is invariant under some special similarity transformations and that the same is true for the class of normaloid operators.
Theorem 28. Let S be an invertible operator such that $||S|| = ||S^{-1}|| = 1$.

(i) If T is an operator of class $(N;k)$, so is $S^{-1}TS$.

(ii) If T is normaloid, then so is $S^{-1}TS$.

Proof. (i) Since for any k, $(S^{-1}TS)^k = S^{-1}T^kS$, for $x \in X$ such that $||x|| = 1$, we obtain

$$||S^{-1}TS\cdot x||^k \leq ||S^{-1}||^k \cdot ||T(Sx)||^k$$

$$= ||T(Sx)||^k \cdot ||S||^k$$

$$\leq ||T^kSx|| \cdot ||S||^{k-1}$$

$$\leq ||S||^{k-1} \cdot ||x||^{k-1} \cdot ||S^{-1}T^kS\cdot x||$$

$$\leq ||(S^{-1}TS)^k\cdot x||.$$

This proves that $S^{-1}TS$ is of class $(N;k)$.

(ii) Since $||T|| = r(T)$, the spectral radius of T, we obtain, in view of the fact that similar operators have the same spectrum,
Thus $S^{-1}TS$ is normaloid.

It is well known that the sum and the product of two normal operators are normal if each commutes with the adjoint of the other \cite[270]{44}. Here we intend to impose conditions on the real and imaginary parts of two normal operators so as to ensure the normality of their sum.

If $T_1 = A + iB$ and $T_2 = C + iD$ are two normal operators in their Cartesian forms then it is easily seen by a simple calculation that $T_1 + T_2$ is normal if and only if $AD - DA = BC - CB$. In particular, if T_1 and T_2 are normal operators such that the real part of each commutes with the imaginary part of the other, then $T_1 + T_2$ is normal. In the case of hyponormal operators, the situation demands closer examination. We in fact, prove the following

Theorem 29. Let T_1 and T_2 be hyponormal operators on H.
(i) If each of T_1 and T_2 commutes with the adjoint of the other, then $T_1 + T_2$ and $T_1^*T_2$ are hyponormal.

(ii) If the real part of each of T_1 and T_2 commutes with the imaginary part of the other, then $T_1 + T_2$ is hyponormal.

Proof. (i) Under the given conditions, we have

$$(T_1 + T_2)(T_1 + T_2)^* = (T_1 + T_2)(T_1^* + T_2^*)$$

$$= T_1^*T_1 + T_1^*T_2^* + T_2^*T_1 + T_2^*T_2^*$$

$$= T_1^*T_2 + T_1^*T_2^* + T_2^*T_1 + T_2^*T_2$$

$$= (T_1^* + T_2^*)(T_1 + T_2).$$

This proves that $T_1 + T_2$ is hyponormal.

To prove the hyponormality of T_1T_2, observe first that for any two self-adjoint operators S and T such that $S \leq T$, we have $R^*SR \leq R^*TR$ for any operator R; see [1, page 150]. In fact,

$$(R^*SRx,x) = (SRx,Rx)$$

$$\leq (TRx,Rx)$$

$$= (R^*TRx,x)$$
for all \(x \in H \). Therefore,

\[
(T_1T_2)(T_1T_2)^* = T_1(T_2T_2^*)T_1^*
\]

\[
\leq (T_1T_2^*)(T_2T_1^*)
\]

\[
= T_2^*(T_1T_1^*)T_2
\]

\[
\leq T_2^*(T_1^*T_1)T_2
\]

\[
= (T_2^*T_1^*)(T_1T_2)
\]

\[
= (T_1T_2)^*(T_1T_2).
\]

Thus \(T_1T_2 \) is hyponormal.

(ii) We can verify that an operator \(T = A + iB \) is hyponormal if and only if the imaginary part of \(AB \) is negative; that is \((AB - BA)/2i \leq 0 \). [1, page 161]. Indeed the hyponormality of \(T \) is equivalent to the condition

\[
(A + iB)(A - iB) - (A - iB)(A + iB) \leq 0
\]

which is the same as

\[
2i(BA - AB) \leq 0.
\]

Thus

\[
\frac{BA - AB}{2i} \leq 0
\]

as asserted above.
Now

\[(T_1 + T_2)(T_1 + T_2)^* = (A + C)^2 + (B + D)^2 + i(B + D)(A + C) - i(A + C)(B + D)\]

and

\[(T_1 + T_2)^*(T_1 + T_2) = (A + C)^2 + (B + D)^2 + i(A + C)(B + D) - i(B + D)(A + C)\]

Therefore,

\[(T_1 + T_2)(T_1 + T_2)^* - (T_1 + T_2)^*(T_1 + T_2)\]

\[= 21 \left[(B + D)(A + C) - (A + C)(B + D) \right]\]

\[= 21 \left[(BA - AB) + (BC - CB) + (DA - AD) + (DC - CD) \right]\]

\[= 4 \left[P + Q \right]\]

where \(P\) and \(Q\) are the imaginary parts of \(AB\) and \(CD\). Since \(P < 0\) and \(Q < 0\) imply \(P + Q < 0\), the proof is complete.