LIST OF FIGURES

Figure 2.1 Phase diagram of water...21
Figure 2.2 Variation of dielectric constant of water with temperature and pressure
[10]..22
Figure 2.3 Teflon-Lined Stainless Steel Autoclave.................................28
Figure 2.4 Flow chart of Hydrothermal Synthesis.......................................31
Figure 3.2.1 Photograph of XRD instrument at UGC-CSRI, Indore Centre...40
Figure 3.2.2 Photograph of XRD instrument at ERDA, Vadodara..............41
Figure 3.3.1 Xrd reflections of undoped and Cerium doped PbWO4 synthesized using
 Lead acetate (1, 2) and Lead nitrate (3, 4)...47
Figure 3.3.2 Xrd reflections of undoped and Cerium doped PbWO4 synthesized
 using Lead chloride (5,6)..47
Figure 3.3.3 Magnified (112) reflection peak of (a) Sample 1-4 (b) Sample 5-6......52
Figure 3.5.1 Indexed XRD reflections of PbWO4 synthesized at (a) 3pH, (b) 7pH and
 (c) 11pH...56
Figure 3.5.2 XRD pattern of PbWO4 prepared at different pH......................57
Figure 3.5.3 Shift of (112) reflection peak of PbWO4 prepared at different pH.......58
Figure 3.6.1 XRD pattern of PbWO4 prepared at different temperature..............62
Figure 3.6.2 Effect of synthesis Temperature on Lattice Parameters of PbWO4..........63
Figure 3.6.3 Effect of synthesis Temperature on Volume and Average Crystallite size
 of PbWO4...64
Figure 3.6.4 Shift of (112) peak of PbWO4 synthesized at different temperature........65
Figure 3.7.1 Indexed XRD spectra of PbWO4: Ce synthesized at (a) R.T. (b) 100°C
 (c) 150°C and (d) 200°C..68
Figure 3.7.2 XRD pattern of PbWO4:Ce prepared at different Temperature..............68
Figure 3.7.3 Effect of synthesis Temperature on Lattice Parameters of PbWO4:Ce...70
Figure 3.7.4 Effect of synthesis Temperature on Volume and Average Crystallite size of PbWO$_4$:Ce
Figure 3.7.5 Shift of (112) peak of PbWO$_4$:Ce synthesized at different temperature
Figure 3.8.1 Xrd spectra of PbWO$_4$ and PbWO$_4$:Ce synthesized at 100°C
Figure 3.8.2 Xrd spectra of PbWO$_4$ and PbWO$_4$:Ce synthesized at 150°C
Figure 3.8.3 Xrd spectra of PbWO$_4$ and PbWO$_4$:Ce synthesized at 200°C
Figure 3.8.4 Shift of (112) peak of undoped and Cerium doped PbWO$_4$ prepared at different temperature
Figure 4.1 Photograph of TEM (Model: Philips Tecnai 20 G2, FEI make) instrument at UGC-CSR, Indore Centre
Figure 4.2 Photograph of TEM (Model: Philips Tecnai 20, Holland) instrument at SICART, Vidhyanagar, Anand
Figure 4.3 Photograph of SEM (JEOL JSM-6380LV) instrument at ERDA, Vadodara
Figure 4.4 SEM images of PbWO$_4$ (a) agglomeration of dendrite with single trunk reported in ref. [2]; (b) single trunk dendrite produced using Lead acetate as lead source; (c) tetrahedron microparticles reported in ref. [3]; (d) tetrahedron microparticles produced using Lead acetate as lead source
Figure 4.5 SEM images of microbelts (left) and octahedron microparticles (right) of PbWO$_4$:Ce produced using Lead acetate as lead source
Figure 4.6 TEM images of PbWO$_4$:Ce produced using Lead acetate as lead source
Figure 4.7 Growth mechanism of PbWO$_4$ microbelt suggested by C. Zheng
Figure 4.8 (a) SEM image of agglomerated microbelts and dendrites of PbWO$_4$; (b) High magnified SEM image of individual six branched/trunk dendrite (inset shows same dendrite with scale); (c) Three dimensional dendrite reported in [9] by Biao Liu et al. with CTAB surfactant
Figure 4.9 TEM image of rhombic shaped PbWO$_4$ microparticles (a) synthesized by us without using any surfactant; (b) synthesized by using PVP [12] and (c) CTAB [13] surfactant; (d) nanoparticles prepared without surfactant...........97

Figure 4.10 TEM images of Cerium doped tetrahedron PbWO$_4$ prepared using Lead nitrate as a Lead source with different magnification.........................100

Figure 4.11 TEM images of agglomerated octahedron microparticles and flat micro belts of PbWO$_4$ prepared with Lead Chloride (both images are of same sample)...102

Figure 4.12 TEM images of agglomerated tetrahedron microparticles of Cerium doped PbWO$_4$ prepared with Lead Chloride (both images are of same sample)..103

Figure 4.13 The high-magnification TEM images of (a) quasi-spherical hollow nano particles (HNPs) of PbWO$_4$ with scale (b) hollow nano tubes (HNTs) of PbWO$_4$ with scale (c) individual single HNT...109

Figure 4.14 Schematic diagram showing formation of PbWO$_4$ Hollow Nano Particles by Process A...111

Figure 4.15 Polycrystalline Ag$_2$Se nanotubes [29]..112

Figure 4.16 TEM image of agglomerated PbWO$_4$ nanorods..........................113

Figure 4.17 TEM images of PbWO$_4$ prepared at (a-b) 100°C and (c-d) 125°C temperatures...117

Figure 4.18 TEM images of PbWO$_4$:Ce prepared at (a-b) 100°C and (c-d) 200°C temperatures...118

Figure 4.19 TEM image of PbWO$_4$ microparticle synthesized by hydrothermal method using Tripotassium citrate surfactant at 180°C temperature by Wei Zhao...119
Figure 5.1 Band Structure of PbWO$_4$…………………………………………………………..126

Figure 5.2 Schematic diagram of a crystal field splitting and hybridization WO$_4^{2-}$ group [4]……………………………………………………………………………………………………..128

Figure 5.3(a) PL spectra of PbWO$_4$ synthesized with different Lead Sources………………137

Figure 5.3(b) PL spectra of PbWO$_4$ synthesized with Lead Acetate…………………………137

Figure 5.3(c) PL spectra of PbWO$_4$ synthesized with Lead Nitrate…………………………137

Figure 5.4 PL spectra of PbWO$_4$ prepared with Lead Chloride at 100°C…………………..140

Figure 5.5 Splitting of Triplet states due to Jahn-Teller effect [45]……………………………143

Figure 5.6 Excitation spectra of PbWO$_4$ (sample 8)……………………………………………..147

Figure 5.7 Effect of Synthesis Parameters on PhotoLuminescence intensity………………149

Figure 5.8 PL spectra of PbWO$_4$ synthesized at 200°C………………………………………..150

Figure 5.9 PL emission of PbWO$_4$ synthesized at different pH excited with 300nm……154

Figure 5.10 PL emission of PbWO$_4$ synthesized at different pH excited with 254 nm….155

Figure 5.11 PL spectra of PbWO$_4$ synthesized at different temperatures…………………..159

Figure 5.12 PL spectra of PbWO$_4$ prepared at different temperatures excited with

254nm…………………………………………………………………………………………….161

Figure 5.13 PL spectra of PbWO$_4$:Ce prepared at different temperatures excited with

300nm…………………………………………………………………………………………….165

Figure 5.14 PL spectra of PbWO$_4$: Ce prepared at different temperatures excided with

254nm…………………………………………………………………………………………….166

Figure 5.15 Up-conversion luminescence in PbWO$_4$ synthesized at different pH…………170

Figure 5.16 Up-conversion luminescence in PbWO$_4$ synthesized at different

Temperatures……………………………………………………………………………………171