CONTENTS

- List of Figures I
- List of Tables IX
- Abbreviations XI
- Notations XIII

1. Introduction 1–39
 1.1 Introduction of New Era: Renewable Energy 2
 1.2 Hydrogen Energy Scenario 3
 1.3 Why Hydrogen is Most Preferable? 4
 1.4 Hydrogen Energy Systems 7
 1.4.1 Production 8
 1.4.1.1 From Fossil Fuels 9
 1.4.1.2 Gasification Method 10
 1.4.1.3 Electrolysis 10
 1.4.1.4 Thermal Decomposition 12
 1.4.1.5 Biochemical Method 12
 1.4.2 Delivery 13
 1.4.3 Storage 13
 1.4.3.1 Gaseous Form 16
 1.4.3.2 Liquid Form 17
 1.4.3.3 Slush Form 18
 1.4.3.4 Solid State Form 18
 1.4.4 Conversion 28
 1.4.5 Application 28
 1.5 Importance of Hydrogen Storage 29
 1.6 Requirement of Hydrogen Storage media 29
 1.7 Why Magnesium Based Metal Hydride is Chosen? 30
 1.8 Bench Marks on Pure Magnesium 31

2.1 Introduction 41
2.2 Basic Concept on Metallic Hydride 42
2.3 Reaction Mechanism of the Solid State Hydrogen Storage 44
2.4 A State–of–the Art Report of Most Popular Metallic Hydride 49
 2.4.1 Element 49
 2.4.2 AB Type 59
 2.4.3 A₂B Type 60
 2.4.4 AB₂ Type 61
 2.4.5 AB₅ Type 61
2.5 Estimation of the Fractional Hydrogen into Metal 62
 2.5.1 Using Ideal Gas Equation 63
 2.5.2 Using Real Gas Equations 64
 2.5.2.1 The Van–der–Waal Equation of State 64
 2.5.2.2 The Redlich–Kwong Equation of State 65
 2.5.2.3 The Redlich–Kwong–Soave Equation of State 65
2.6 Reaction Kinetics of the Solid State Hydrogen Storage 66
 2.6.1 First Order Model 67
 2.6.2 Shrinking Core Model (SCM) 67
 2.6.3 Johnson–Mehl–Avrami Model (JMA Model) 70
2.7 Thermodynamic Properties (ΔH and ΔS) 71
 2.7.1 The Pressure Composition Isotherm (PCI) 71
 2.7.2 Van’t Hoff Relationship 74

References 76
3. Materials and Experimental Techniques 81–103

3.1 Materials 82

3.2 Sample Preparation using High Energy Ball Milling Method

3.2.1 Laboratory Planetary Ball Mill 83

3.2.2 Procedure of Ball Milling 84

3.3 Characterization Techniques 85

3.3.1 Scanning Electron Microscopy (SEM) 85

3.3.2 Energy Dispersive X–Ray Spectroscopy (EDS) 87

3.3.3 X – Ray Diffractometer (XRD) 89

3.4 Hydriding – Dehydriding Analysis Using Sievert’s Equipment

3.4.1 Vacuum Procedure 94

3.4.2 Computation of the Absorbed Mass% of Hydrogen 95

3.4.3 Computation of the Desorbed mass% of Hydrogen 97

3.5 Thermal Analysis – Differential Scanning Calorimetry (DSC) 98

4. Hydriding / Dehydriding Studies on Magnesium Based Compositions 104–179

4.1 Introduction 105

4.2 Preliminary Study on Magnesium

4.2.1 Pure Magnesium 105

4.2.2 Mg₂Ni Alloy Composition 108

4.2.3 Mg–Fe–Mn–Ni Composition 111

4.3 Ternary Mg–V–Ni Alloy Compositions 116

4.3.1 Sample Preparation 116

References 102
4.3.2 Characterization Study 117
4.3.3 Hydriding and Dehydriding Analysis 124
4.3.4 Deviations in Hydriding and Dehydriding Kinetics due to Departure from Ideal Gas Behavior of Hydrogen
4.3.5 Reaction Kinetics Modelling Analysis 133
4.3.6 Prediction of Formation Enthalpy and Entropy 136

4.4 Ternary Mg–Pd–Ni Alloy Compositions 138
4.4.1 Sample Preparation 138
4.4.2 Characterization Study 139
4.4.3 Hydriding and Dehydriding Analysis 144
4.4.4 Deviations in Hydriding and Dehydriding Kinetics due to Departure from Ideal Gas Behavior of Hydrogen
4.4.5 Reaction Kinetics Modelling Analysis 153
4.4.6 Prediction of Formation Enthalpy and Entropy 156

4.5 Quaternary Mg–Zr–Mn–Ni Alloy Compositions 158
4.5.1 Sample Preparation 158
4.5.2 Characterization Study 159
4.5.3 Hydriding and Dehydriding Analysis 165
4.5.4 Deviations in Hydriding and Dehydriding Kinetics due to Departure from Ideal Gas Behavior of Hydrogen
4.5.5 Reaction Kinetics Modelling Analysis 173
4.5.6 Prediction of Formation Enthalpy and Entropy 176

5. **Hydriding / Dehydriding Studies on Low Temperature Metal Hydrides** 180–196

5.1 Introduction 181
5.2 Fe–Ti–Ni Alloy Composition 181
 5.2.1 Sample Preparation 181
 5.2.2 Characterization Study 182
 5.2.3 Hydriding / Dehydriding Analysis 185
5.3 V–Ti Alloy Composition 186
 5.3.1 Sample Preparation 186
 5.3.2 Characterization Study 187
 5.3.3 Hydriding / Dehydriding Analysis 189
5.4 V–Ni Alloy Composition 191
 5.4.1 Sample Preparation 191
 5.4.2 Characterization Study 192
 5.4.3 Hydriding / Dehydriding Analysis 194

References 196

6. Novel Applications of the Developed Materials 197–212

6.1 Introduction 198
6.2 Hydrogen Storage 198
6.3 Fuel Storage Applications 199
 6.3.1 Stationary Fuel Storage 199
 6.3.2 Vehicular Fuel Storage 203
6.3 Electrical Energy Storage 205
 6.3.1 Nickel Metal Hydride Battery (Electrodes) 205
 6.3.2 Fuel Cell 206
6.4 Thermodynamic Devices 206
 6.4.1 Heat Pump 207
 6.4.2 Refrigerator 208
 6.4.3 Compressor 209
6.5 Others 209
 6.5.1 Catalysts for Hydrogen Reduction 209
 6.5.2 Sensor Devices 210
6.5.3 Purification

- References

7. Summary and Conclusions

- Scope for Further Study
- Appendix–A: Regression Modeling of Experimental Data
- Appendix–B: Formulations of Van’t Hoff Relation