List of Figures

Chapter 1
Figure 1(a): Scenario before ionisation 5
Figure 1(b): Ionisation 5
Figure 1(c): Trapping centres with occupied trap charges—holes and electrons 5
Figure 1(d): de-trapping and recombination 5
Figure 2: Glow curve from a TL phosphor 8
Figure 3: OSL decay curve 13
Figure 4: A basic block diagram of a typical TL/OSL system 17
Figure 5: Technical requirements of the TL/OSL system 18

Chapter 2
Figure 1: A basic PMT 38
Figure 2: Silicon Photomultiplier with its equivalent circuit 45
Figure 3: A Digital Silicon Photomultiplier 48
Figure 4: Block diagram of a system based on analogue SiPM and digital SiPM 49
Figure 5: EMCCD cameras 50
Figure 6: Comparison of QE/PDE of PMT, SiPM, and digital SiPM. 53
Figure 7: Minimum detectable power verses wavelength for bialkali (blue sensitivity) PMT, multialkali (red sensitivity) PMT, SiPM, and dSiPM 54

Chapter 3
Figure 1: Block diagram of the TL/OSL system 73
Figure 2: Driving signal, Temperature signal and Error signal graph for heater unit 74
Figure 3: Thermocouple filter and amplifier circuit 78
Figure 4: Trigger circuit for EMCCD 79
Figure 5: OSL feedback and LED driver circuit 82
Figure 6: Aluminium LED Holder focussing the light on the centre 83
Figure 7: Set-up of the System 84
Figure 8: Driving signal, Temperature signal and Error signal graph for the OSL unit 85
Figure 9: Spartan-6 LX9 micro board with ADC and DAC kits attached to it 87
Figure 10: Sine wave
Figure 11: Symmetrical Square wave
Figure 12: Interrupted Symmetrical Wave
Figure 13: Unidirectional Rectangular Wave
Figure 14: H-bridge circuit
Figure 15: Shape and size of ETD 34/17/11
Figure 16: Labview based GUI with the visual display of the stimulation process
Figure 17: Andor iXON DU-897 EMCCD camera
Figure 18: Spectral range of iXON DU-897 EMCCD camera
Figure 19: Design of the mechanical housing for the optics
Figure 20: Linearity in thermal stimulation for TL done up to 500 °C at 10 °C/s with 7 s hold-time
Figure 21: Error in thermal stimulation for TL done up to 500 °C at 10 °C/s with 7 s hold-time
Figure 22: Histogram of deviations from linearity for 500 °C at 10°C/s with 7 s hold-time
Figure 23: Linearity in thermal stimulation for TL done up to 500 °C at 9 °C/s with 7 s hold-time
Figure 24: Error in thermal stimulation for TL done up to 500 °C at 9 °C/s with 7 s hold-time
Figure 25: Histogram of deviations from linearity for 500 °C at 9 °C/s with 7 s hold-time
Figure 26: Linearity in thermal stimulation for TL done up to 500 °C at 8 °C/s heating rate
Figure 27: Error in thermal stimulation for TL done up to 500 °C at 8 °C/s heating rate
Figure 28: Histogram of deviations from linearity for 500 °C at 8 °C/s heating rate
Figure 29: Linearity in thermal stimulation for TL done up to 500 °C at 7 °C/s with 7 s hold-time
Figure 30: Error in thermal stimulation for TL done up to 500 °C at 7 °C/s with 7 s hold-time
Figure 31: Histogram of deviations from linearity for 500°C at 7 °C/s with 7 s hold-time
Figure 32: Linearity in thermal stimulation for TL done up to 500 °C at 6 °C/s with
5 s hold-time

Figure 33: Error in thermal stimulation for TL done up to 500 °C at 6 °C/s with

5 s hold-time

Figure 34: Histogram of deviations from linearity for 500°C at 6 °C/s with

5 s hold-time

Figure 35: Linearity in thermal stimulation for TL done up to 500 °C at 5 °C/s with

7 s hold-time

Figure 36: Error in thermal stimulation for TL done up to 500 °C at 5 °C/s with

7 s hold-time

Figure 37: Histogram of deviations from linearity for 500°C at 5 °C/s with

7 s hold-time

Figure 38: Linearity in thermal stimulation for TL done up to 500 °C at 4 °C/s with

5 s hold-time

Figure 39: Error in thermal stimulation for TL done up to 500 °C at 4 °C/s with

5 s hold-time

Figure 40: Histogram of deviations from linearity for 500°C at 4 °C/s with

5 s hold-time

Figure 41: Linearity in thermal stimulation for TL done up to 500 °C at 3 °C/s with

5 s hold-time

Figure 42: Error in thermal stimulation for TL done up to 500 °C at 3 °C/s with

5 s hold-time

Figure 43: Histogram of deviations from linearity for 500°C at 3°C/s with

5 s hold-time

Figure 44: Linearity in thermal stimulation for TL done up to 500 °C at 2 °C/s with

5 s hold-time

Figure 45: Error in thermal stimulation for TL done up to 500 °C at 2 °C/s with

5 s hold-time

Figure 46: Histogram of deviations from linearity for 500°C at 2 °C/s with

5 s hold-time

Figure 47: Linearity in thermal stimulation for TL done up to 500 °C at 1 °C/s with

7 s hold-time

Figure 48: Error in thermal stimulation for TL done up to 500 °C at 1 °C/s with

7 s hold-time

Figure 49: Histogram of deviations from linearity for 500 °C at 1 °C/s with 7 s hold-time

120
Figure 50: Linearity in thermal stimulation for TL done up to 350 °C at 0.5 °C/s
Figure 51: Error in thermal stimulation for TL done up to 350 °C at 0.5 °C/s
Figure 52: Histogram of deviations from linearity for 350°C at 0.5 °C/s
Figure 53: Linearity in optical stimulation for ramping upto 100% intensity
 at 0.1 %/s rate with 15 s hold-time
Figure 54: Error in optical stimulation for OSL done up to 100% at 0.1 %/s with
 15 s hold-time
Figure 55: Histogram for 100% at 0.1 %/s with 15 s hold-time
Figure 56: Linearity in optical stimulation for ramping upto 100% intensity
 at 0.5 %/s rate with 15 s hold-time
Figure 57: Error in optical stimulation for OSL done up to 100% at 0.5 %/s
 with 15 s hold-time
Figure 58: Histogram for 100% at 0.5 %/s with 15 s hold-time
Figure 59: Linearity in optical stimulation for ramping upto 100% intensity
 at 1 %/s rate with 15 s hold-time
Figure 60: Error in optical stimulation for OSL done up to 100% at 1 %/s
 with 15 s hold-time
Figure 61: Histogram for 100% at 1 %/s with 15 s hold-time
Figure 62: Linearity in optical stimulation for ramping upto 100% intensity
 at 1.5 %/s rate with 15 s hold-time
Figure 63: Error in optical stimulation for OSL done up to 100% at 1.5 %/s
 with 15 s hold-time
Figure 64: Histogram for 100% at 1.5 %/s with 15 s hold-time
Figure 65: Linearity in optical stimulation for ramping upto 100% intensity at 2 %/s
 rate with 15 s hold-time
Figure 66: Error in optical stimulation for OSL done up to 100% at 2 %/s
 with 15 s hold-time
Figure 67: Histogram for 100% at 2 %/s with 15 s hold-time
Figure 68: Error in optical stimulation for CW-OSL (step profile) at 70% intensity
 for 30 s
Figure 69: Histogram for optical stimulation for CW-OSL (step profile) at 70%
 intensity for 30s
Figure 70: Luminescence from quartz
Figure 71: Luminescence from Feldspar
Figure 72: Counts versus dose graph for the Daybreak system
Figure 73: Counts versus dose graph for the Risoe system
Figure 74: Luminescence from Calcium Fluoride

Chapter 4
Figure 1: Powder X-ray diffraction patterns
Figure 2: Structure of CaF$_2$
Figure 3: Optical absorption spectrum of CaF$_2$ nanocrystals
Figure 4: Energy band gap plot of pure CaF$_2$ nanocrystals
Figure 5: Schematic of PL instrument
Figure 6: PL emission spectrum of CaF$_2$ nanocrystals excited at 235 nm.

Chapter 5
Figure 1: Transmission curve for Schott bg39 filter of 2 mm thickness.
Figure 2: Glow curves of CaF2 annealed in vacuum and in air
Figure 3: Glow curves of CaF2 annealed at different temperature
Figure 4: TL sensitivity of CaF2 for different annealing temperature at a fixed annealing duration of 1.5 h
Figure 5: FWHM for different annealing temperature at a fixed annealing duration of 1.5 h
Figure 6: Tm with respect to different annealing temperatures for a fixed annealing duration of 1.5 h
Figure 7: Annealing at various duration while keeping the temperature fixed at 500 °C and at 600 °C
Figure 8: Glow curves for different duration of annealing for fixed temperature of 500 °C
Figure 9: TL sensitivity for different duration of annealing for fixed temperature of 500 °C
Figure 10: FWHM for different duration of annealing for fixed temperature of 500 °C
Figure 11: Peak temperature (Tm) for different duration of annealing for fixed temperature of 500 °C
Figure 12: Effect of different heating rate on the glow curve
Figure 13: Difference between first order kinetic and second order kinetics
glow-curve

Figure 14: Transmission curve for Schott bg39 filter of 2 mm thickness.

Figure 15: TL glow curve of the phosphor at sequentially increasing temperatures.

Figure 16: Graph of ln(I) vs 1/kT for TL up to 180 °C.

Figure 19: Activation energy at different temperatures.

Figure 17: Graph of ln(I) vs 1/kT for TL up to 200 °C.

Figure 18: Graph of ln(I) vs 1/kT for TL up to 220 °C.

Figure 20: Geometrical parameters for the glow curve method of analysis.

Figure 21: Relation between the symmetry factor (µ) and the order of kinetics (b).

Figure 22: Effect of various heating rate on the glow curve.

Figure 23: Graph of $\ln\left(\frac{B}{T_M^2}\right)$ versus $\left(\frac{1}{kT_M}\right)$ to calculate the activation energy.

Figure 24: TL dose response of CaF$_2$.

Figure 25: Saturation exponential.

Figure 26: CW-OSL mode stimulation and emission.

Figure 27: LM-OSL mode stimulation and emission.

Figure 28: POSL mode stimulation and emission.

Figure 29: Transmission curve for schott bg39 filter of 2 mm thickness.

Figure 30: Transmission curve for Hoya u340 filter of 7.5 mm thickness.

Figure 31: Transmission curve for Corning 7-59 filter of 4 mm thickness.

Figure 32: The green curve is the resultant transmission of the bg39 and Corning 7-59 filter.

Figure 33: Decay curve for IR OSL with bg39 filter.

Figure 34: Decay curve for IR-OSL with bg39 +7-59 filter.

Figure 35: Decay curve for IR-OSL with u340 filter.

Figure 36: Decay curve for blue OSL with u340 filter.

Figure 37: OSL dose response.

Figure 38: OSL dose response.

Figure 39: Glow-curve of CaF$_2$.

Figure 40: OSL decay curve without any prior TL.

Figure 41: TL till 120 °C to remove the first peak.

Figure 42: OSL decay curve after the first peak was thermally removed.

Figure 43: TL till 400 °C to remove the second peak.
Figure 44: OSL decay curve after all the peaks are removed