CHAPTER V

IONOSPHERIC ELECTRON CONTENT AND EQUIVALENT SLAB THICKNESS
IN RELATION TO SOLAR AND MAGNETIC ACTIVITY

5.1 Introduction
5.2 Dependence of daytime N_T on solar flux
5.3 Dependence of night time N_T on solar flux
5.4 Dependence of daytime N_T/n_{max} on solar flux
5.5 Dependence of daytime N_T on magnetic activity
5.6 Dependence of night time N_T on magnetic activity
5.7 Dependence of daytime N_T/n_{max} on magnetic activity
5.8 Dependence of night time N_T/n_{max} on magnetic activity
5.9 Dependence of daytime and night time values of N_a/N_b on magnetic activity
5.10 Dependence of daytime and night time values of h_pF_2 on magnetic activity
5.11 Discussion
CHAPTER V

IONOSPHERIC ELECTRON CONTENT AND EQUIVALENT SLAB THICKNESS
IN RELATION TO SOLAR AND MAGNETIC ACTIVITY

5.1 Introduction

It is well known that the critical frequency, $f_{o}F_2$, of the F_2 layer varies markedly with the solar cycle. Bhonsle et al (1965) found, the solar cycle dependence of N_T, the total electron content up to about 1000 km over middle latitudes for sunspot numbers higher than 40. Yeh and Flaherty (1966) extended these observations to sunspot numbers less than 40. Hibberd and Ross (1966) have examined the relationship between 10.7 cm solar flux and total electron content over middle latitudes. Over low latitudes, these effects have not been studied in detail. In this Chapter, the dependence of N_T and N_T/n_{max} on 10.7 cm solar flux and the effect of moderate magnetic activity (defined by A_p index) on electron content have been studied and the results are presented. Before examining the data for such effects the reasons for not studying the magnetic storm variations may be mentioned. Since the satellite technique provides only a few measurements in a day, it is not possible to follow the effects of individual magnetic disturbances throughout its life. Further, the ionosphere fluctuates from day to day even under magnetically quiet conditions and it is often difficult to decide whether a change observed in a short interval of time is really related...
to the storm or is a random variation. Because of such drawbacks in the technique of investigation, storm time variations could not be studied in detail. Instead, the dependence of N_T/N_{max}, N_a/N_b and h_pF_2 on moderate magnetic activity defined by A_p is studied.

5.2 Dependence of daytime N_T on solar flux

In Fig. 5.1 the values of N_T measured between 12 hours and 16 hours are plotted against the daily values of 10.7 cm solar flux. In order to get over the effect of diurnal variation, the time around mid-day hours has been chosen. The N_T values have been plotted separately for summer, winter and equinox. In all the seasons it can be seen that N_T increases linearly with 10.7 cm solar flux. In winter, N_T seems to increase at a slow rate till the solar flux reaches a value of about 100 units, and beyond this, it increases with solar flux at a faster rate. In summer and equinox, this transition at the solar flux value of about 100 units is not noticeable. The change of N_T per unit of 10.7 cm solar flux is about 0.04×10^{17} in summer and 0.054×10^{17} in equinox. In winter, this is about 0.02×10^{17} when the solar flux is below 100 units, and 0.06×10^{17} unit flux, above 100 units.

The value of the logarithmic gradient, $\frac{\partial \ln N_T}{\partial \ln 10^{17}}$ comes out to be 0.025 in winter and 0.01 in summer and equinox.
AHMEDABAD S-66 1964-67 1200-1600 HOURS

DEPENDENCE OF MID-DAY TOTAL ELECTRON CONTENT ON 10.7 CM. SOLAR FLUX

![Graph showing dependence of mid-day total electron content on 10.7 cm solar flux for Equinox, Winter, and Summer phases.](image)

Fig. 5.1 Dependence of afternoon (12-16 hrs) total electron content on 10.7 cm solar flux.
5.3 Dependence of night-time N_T on solar flux

Between 23 hours and 03 hours N_T remains nearly steady. The values of N_T measured during this part of the night have been used for studying the effect of solar flux at night. In Fig.5.2, the night-time values of N_T have been plotted against the daily values of 10.7 cm solar flux separately for summer, winter and equinox. In all the seasons, night-time N_T also seems to have a linear dependence on solar flux. The rate of increase with solar flux seems to be nearly the same in all the seasons. N_T increases at the rate of about 0.007×10^{17} per unit flux. The night-time logarithmic gradient comes out to be about 0.02.

5.4 Dependence of daytime N_T/n_{max} on solar flux

It is generally accepted that solar extreme ultraviolet radiation is an important source responsible for the heating of the F region (Hunt and van Zandt, 1961). Satellite drag measurements show that the thermopause temperature and hence the neutral particle densities at F region heights vary linearly with the solar activity (Nicolet, 1963). Since the average equivalent slab thickness, N_T/n_{max}, is an indicator of scale height and electron-ion mean temperature, it must have positive correlation with solar flux. In Fig.5.3, the daytime values of N_T/n_{max} are plotted against the daily values of 10.7 cm solar flux. It can be seen that there is linear relationship between N_T/n_{max} and 10.7 cm solar flux (S). The rate of increase
Fig. 5.2 Dependence of night time (23-03 hrs) total electron content on 10.7 cm solar flux
AHMEDABAD S-66 1964-67

DEPENDENCE OF N_T/N_{MAX} ON SOLAR FLUX

Equinox

Summer

Winter

Fig. 5.3 Dependence of daytime N_T/N_{MAX} on 10.7 cm solar flux
of \(T \) per unit flux is about 1 km in winter, 1.2 km in equinox, and 1.5 km in summer. The empirical linear relationship between \(T \) and \(S \) may be written as

\[
T \text{ (km)} = 175 + 1.0 (S-70) \text{ for winter}
\]

\[
T \text{ (km)} = 210 + 1.2 (S-70) \text{ for equinox}
\]

\[
T \text{ (km)} = 200 + 1.4 (S-70) \text{ for summer.}
\]

5.5 Dependence of daytime \(N_T \) on moderate magnetic activity

In Fig.5.4, the day-time values of \(N_T \) have been plotted against the daily values of \(A_p \) separately for summer, winter and equinox. In summer and equinox, the total electron content decreases with increase in magnetic activity. In winter there is probably a similar effect but it is not clear.

5.6 Dependence of night-time \(N_T \) on magnetic activity

In Fig.5.5, the values of \(N_T \) measured between 23 hours and 03 hours are plotted against \(A_p \) index separately for summer, winter and equinox. It can be seen that \(N_T \) increases with magnetic activity. In summer the figure shows more scatter. A whole-year plot is also given in Fig.5.6. It thus appears that while the total electron content decreases with increase in magnetic activity in the afternoon hours it increases with increase in \(A_p \) in the late night hours.
AHMEDABAD S-66 12-16 HOURS
DEPENDENCE OF DAYTIME N_T
ON MAGNETIC ACTIVITY

EQUINOX

WINTER

SUMMER

$N_T \times 10^7 \text{ m}^2$

A_p INDEX

FIG. 5-4
AHMEDABAD S-66 23-03 HOURS
DEPENDENCE OF NIGHT-TIME N_T ON MAGNETIC ACTIVITY

EQUINOX

WINTER

SUMMER

$N_T \times 10^{17} / M^2$

A_p INDEX

FIG. 5.5
AHMEDABAD S-66 1964-65 23-03 HRS
DEPENDENCE OF NIGHT-TIME N_T ON
MAGNETIC ACTIVITY (ANNUAL PLOT)

$N_T \times 10^{17}$ M$^{-2}$

A_p INDEX

FIG. 5-6
5.7 Dependence of day-time slab thickness (τ) on magnetic activity

Since the diurnal variation of τ is small, the day-time values have been used for studying the effect of magnetic activity. In Fig.5.7, the day-time values of \(N_t/n_{max} \) have been plotted against \(A_p \) index separately for summer, winter and equinox. In winter, τ increases with increase in \(A_p \). In equinox this effect is not so pronounced. In summer, τ does not show any clear dependence on \(A_p \).

5.8 Dependence of night-time \(N_t/n_{max} \) on magnetic activity

In Fig.5.8, the night-time values of \(N_t/n_{max} \) have been plotted against \(A_p \) index separately for summer, winter and equinox. In summer and equinox night-time \(N_t/n_{max} \) increases with increase in \(A_p \) values. In winter night, \(N_t/n_{max} \) does not seem to depend on magnetic activity.

5.9 Dependence of day-time and night-time values of \(N_a/N_b \) on magnetic activity

The day-time and night-time values of \(N_a/N_b \) have been studied separately. In Fig.5.9, the day-time values of \(N_a/N_b \) have been plotted against \(A_p \) index separately for summer, winter and equinox. In summer \(N_a/N_b \) decreases with increase in \(A_p \) index. In equinox the ratio does not seem to depend on magnetic activity. In winter the ratio increases with \(A_p \) index.
AHMEDABAD S-66 64-65

VARIATION OF N_T/N_{MAX} WITH MAGNETIC ACTIVITY (A_p) DURING DAYTIME

(A) SUMMER (B) WINTER (C) EQUINOX

FIG. 5-7
AHMEDABAD S-66 1964-65
DEPENDENCE OF NIGHT TIME
$\frac{N_t}{n_{\text{MAX}}}$ ON MAGNETIC ACTIVITY

EQUINOX

WINTER

SUMMER

FIG. 5-8
AHMEDABAD S-66

VARIATION OF N_a/N_b WITH MAGNETIC ACTIVITY (A_p) DURING DAYTIME

(A) SUMMER (B) WINTER (C) EQUINOX

FIG. 5.9
The night-time values of N_a/N_b have been shown in Fig. 5.10. These values are plotted against A_p index separately for summer, winter and equinox. Since the ratio becomes very large early in the morning, these values have not been included. It can be seen that in equinox the night-time values of N_a/N_b also do not seem to depend on magnetic activity. While the night-time ratio increases with A_p in summer, it decreases in winter.

5.10 Dependence of day-time and night-time values of h_pF_2 on magnetic activity

Since the electron content variations are connected with the changes in the height of maximum electron density, the dependence of mid-day and mid-night values of h_pF_2 on magnetic activity has also been studied. Fig. 5.11 shows the dependence of mid-day h_pF_2 on A_p. In winter and equinox, mid-day h_pF_2 does not seem to depend on magnetic activity.

In Fig. 5.12 the values of h_pF_2 at 22 hours have been plotted against A_p index separately for summer, winter and equinox. In winter, night-time h_pF_2 increases with A_p. In summer and equinox, night-time h_pF_2 does not seem to depend on magnetic activity.

5.11 Discussion

In Fig. 5.1, the best fitting straight lines have been drawn and these lines have been extended to zero solar flux. It
AHMEDABAD S-66 1964-65
DEPENDENCE OF NIGHT TIME N_a/N_b
ON MAGNETIC ACTIVITY

(C) EQUINOX

(B) WINTER

(A) SUMMER

N_a/N_b

\[\begin{array}{c|c}
0 & 1 \\
2 & 3 \\
4 & 5 \\
6 & 7 \\
8 & 9 \\
10 & 11 \\
12 & 13 \\
14 & 15 \\
16 & 17 \\
\end{array} \]

A_p INDEX

FIG. 5.10
AHMEDABAD 1964-65
DEPENDENCE OF MID-DAY $h_p F_2$
ON MAGNETIC ACTIVITY (A_p)
(A) EQUINOX (B) WINTER (C) SUMMER

FIG. 5-11
AHMEDABAD 1964-65
DEPENDENCE OF 2200 HOUR $h_p F_2$
ON MAGNETIC ACTIVITY (A_p)
(A) EQUINOX (B) WINTER (C) SUMMER

FIG. 5-12
can be seen that in all the seasons the line passes through the origin. Taylor (1966) has reported that the winter line intercepts the solar flux axis at a point significantly away from the origin. This might have been due to the fact that there were no observations corresponding to solar flux values less than 100 units. In the present result also it can be seen that the winter line which fits the observations corresponding to solar flux values higher than 100 units intercepts the x axis at a point away from the origin. If the change in the slope of the line in the region of solar flux less than 100 units is taken into account, the winter line also passes through the origin.

An approximate linear relationship between N_T and sunspot number has been found by Bhonsle et al (1965) for sunspot numbers larger than 40. Yeh and Flaherty (1966) have extended these observations to sunspot numbers less than 40. They find that the linear dependence breaks down when the sunspot number falls below 40. At Ahmedabad in winter, a change in the linear relationship between N_T and S can be seen when the solar flux falls below 100 units. In summer and equinox, this feature is not noticeable even though there are observations corresponding to solar flux values between 70 units and 130 units. Somayajulu et al (1966) have shown that N_T over Delhi is independent of solar flux when the flux is less than 80 units. From Fig.5.1 it can be seen that N_T over Ahmedabad definitely shows an increase with flux even in the region of solar flux less than 80 units.

Bhonsle et al (1965) have determined an empirical relationship between τ in middle latitudes and the mean
sunspot number (τ). Over middle latitudes, the rate of increase of τ with sunspot number is about 1 km in winter, 1.2 km in equinox and 1.35 km in summer. These values have been normalised by Bhonsle et al (1965). After normalising they get a coefficient of 0.005 in all the seasons. Normalising is done by dividing the rate of change of τ by the value of τ corresponding to zero sunspot number. In the present result over Ahmedabad also, it can be seen that the rate of change of τ with solar flux is minimum in winter and maximum in summer. If these values are normalised by dividing the rate of change of τ by the value of τ corresponding to solar flux of 70 units, the coefficient comes out to be about 0.006 in winter and equinox and 0.007 in summer. Since the measurements have been made within a limited range of solar flux the values of these coefficients determined by this analysis are to be treated with caution.

The variation of middle latitude N_T with 10.7 cm solar flux has been studied by Hibberd (1964). He has calculated the rate of change of N_T with flux (S) for summer and winter. In summer and winter he finds $\delta N_T/\delta S$ to be 0.028×10^{17} and 0.038×10^{17} respectively. Over Ahmedabad, $\delta N_T/\delta S$ seems to be higher. From the results of Hibberd, it can be seen that the logarithmic gradient, $\frac{\delta N_T/\delta S}{N_T(100)}$, is nearly the same in winter and summer. Over Ahmedabad this is about 0.01 in summer and equinox and about 0.026 in winter. In winter the middle and low latitude results show the same value of logarithmic gradient of N_T.
Ross (1960), Yeh and Swenson (1961) and de Mendonca (1962) have shown that electron content figures are depressed following a magnetic storm. Ross has shown an inverse dependence of N_T upon $\sum K_p$ for the previous 24 hours during the months of June, July and August 1959. Over middle latitude Ross (1960) and Garriott (1960) have found no systematic dependence during the winter months. Our results over Ahmedabad are also in conformity with these middle latitude results. Lyon (1965) has also found that the middle latitude N_T is inversely dependent upon the magnetic activity index in summer months and not in winter months.

In summer and winter, day-time and night-time values of N_a/N_b exhibit opposite dependence on magnetic activity. In summer, while the day-time values of N_a/N_b decrease with A_p, the night-time values increase with A_p. In winter, day-time shows positive correlation and night-time shows negative correlation.

Summer and winter also behave differently. During day time it can be seen that N_a/N_b decreases with A_p in summer and increases with A_p in winter. In the night also this seasonal effect can be seen. Night-time value of N_a/N_b increases with A_p in summer and decreases with A_p in winter. It can also be noticed that when $h_p F_2$ increases with magnetic activity N_a/N_b decreases. A summary of the results has been provided in Table I.
Table 1

Changes of N_T and related parameters with increase in A_p

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Summer</th>
<th>Winter</th>
<th>Equinox</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_T</td>
<td>Negative</td>
<td>Uncertain</td>
<td>Negative</td>
</tr>
<tr>
<td>N_T/n_{max}</td>
<td>Nil</td>
<td>Positive</td>
<td>Positive</td>
</tr>
<tr>
<td>N_a/N_b</td>
<td>Negative</td>
<td>Positive</td>
<td>Nil</td>
</tr>
<tr>
<td>$h_p F_2$</td>
<td>Positive</td>
<td>Nil</td>
<td>Nil</td>
</tr>
</tbody>
</table>

Day-time

Night-time

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Summer</th>
<th>Winter</th>
<th>Equinox</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_T</td>
<td>Positive</td>
<td>Positive</td>
<td>Positive</td>
</tr>
<tr>
<td>N_T/n_{max}</td>
<td>Positive</td>
<td>Nil</td>
<td>Positive</td>
</tr>
<tr>
<td>N_a/N_b</td>
<td>Positive</td>
<td>Negative</td>
<td>Nil</td>
</tr>
<tr>
<td>$h_p F_2$</td>
<td>Nil</td>
<td>Positive</td>
<td>Nil</td>
</tr>
</tbody>
</table>