CONTENTS OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHAPTER 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Figure 1.1:</td>
<td>Molecular structure of cotton (cellulose)</td>
<td>4</td>
</tr>
<tr>
<td>Figure 1.2:</td>
<td>Interaction of cotton (cellulose) with water</td>
<td>5</td>
</tr>
<tr>
<td>Figure 1.3:</td>
<td>Glytac Trimethyl Ammonium Chloride (Glytac A)</td>
<td>15</td>
</tr>
<tr>
<td>Figure 1.4:</td>
<td>Bis-quaternary mono-reactive type cationizing agent</td>
<td>16</td>
</tr>
<tr>
<td>Figure 1.5:</td>
<td>Various chlorotriazine-type cationizing agents</td>
<td>16</td>
</tr>
<tr>
<td>Figure 1.6:</td>
<td>Various cellulose derivatives</td>
<td>18</td>
</tr>
<tr>
<td>Figure 1.7:</td>
<td>Derivatives formed by reaction of tertiary amine groups with reactive dye</td>
<td>18</td>
</tr>
<tr>
<td>Figure 1.8:</td>
<td>Polyepichlorohydrin and polyepichlorohydrin-amine</td>
<td>19</td>
</tr>
<tr>
<td>Figure 1.9:</td>
<td>DCPEAT, DCPEAT-Cotton and dyed substrate obtained in dyeing with amino alkyl dyes</td>
<td>20</td>
</tr>
<tr>
<td>Figure 1.10:</td>
<td>Treatment of cellulose with chloropropionyl chloride</td>
<td>21</td>
</tr>
<tr>
<td>Figure 1.11:</td>
<td>Treatment with Nicotonyl Thio Glcollate (NTG)</td>
<td>21</td>
</tr>
<tr>
<td>Figure 1.12:</td>
<td>Structure of Chitin, Chitosan and Cellulose</td>
<td>26</td>
</tr>
<tr>
<td>Figure 1.13:</td>
<td>Generic structure of a fibre reactive dye</td>
<td>31</td>
</tr>
<tr>
<td>Figure 1.14:</td>
<td>Reaction of a reactive dye with cotton fibre and water</td>
<td>34</td>
</tr>
<tr>
<td>CHAPTER 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Figure 2.1:</td>
<td>FTIR of synthesized Polyacrylamide (PAA<sub>m</sub>) polymer</td>
<td>60</td>
</tr>
<tr>
<td>Figure 2.2:</td>
<td>Effect of concentration of PAA<sub>m</sub> on the dyeing of pretreated cotton with Procion Brilliant Red M5B reactive dye by exhaust dyeing at neutral pH</td>
<td>78</td>
</tr>
<tr>
<td>Figure 2.3:</td>
<td>Effect of concentration of PAA<sub>m</sub> on the dyeing of pretreated cotton with Procion Brilliant Red H7B reactive dye by exhaust dyeing at neutral pH</td>
<td>78</td>
</tr>
<tr>
<td>Figure 2.4:</td>
<td>Effect of concentration of PAA<sub>m</sub> on the dyeing of pretreated cotton with Remazol Brilliant Violet 5R reactive dye by exhaust dyeing at neutral pH</td>
<td>79</td>
</tr>
<tr>
<td>Figure 2.5:</td>
<td>Effect of concentration of PAA<sub>m</sub> on the dyeing of pretreated cotton with Procion Red HE-3B reactive dye by exhaust dyeing at neutral pH</td>
<td>79</td>
</tr>
<tr>
<td>Figure 2.6:</td>
<td>Effect of concentration of PAA<sub>m</sub> on the dyeing of pretreated cotton with Benzafix Orange ME-2RL reactive dye by exhaust dyeing at neutral pH</td>
<td>80</td>
</tr>
<tr>
<td>Figure 2.7:</td>
<td>Effect of concentration of PAA<sub>m</sub> on the dyeing of pretreated cotton with Procion Brilliant Red M5B reactive dye by pad-dry-cure dyeing at neutral pH</td>
<td>80</td>
</tr>
<tr>
<td>Figure 2.8:</td>
<td>Effect of concentration of PAA<sub>m</sub> on the dyeing of pretreated cotton</td>
<td></td>
</tr>
</tbody>
</table>
with Procion Brilliant Red H7B reactive dye by pad-dry-cure dyeing at neutral pH

Figure 2.9: Effect of concentration of PAA\textsubscript{m} on the dyeing of pretreated cotton with Remazol Brilliant Violet 5R reactive dye by pad-dry-cure dyeing at neutral pH 81

Figure 2.10: Effect of concentration of PAA\textsubscript{m} on the dyeing of pretreated cotton with Procion Red HE-3B reactive dye by pad-dry-cure dyeing at neutral pH 82

Figure 2.11: Effect of concentration of PAA\textsubscript{m} on the dyeing of pretreated cotton with Benzafix Orange ME-2RL reactive dye by pad-dry-cure dyeing at neutral pH 82

Figure 2.12: Effect of concentration of cross-linking agent on the dyeing of pretreated cotton with Procion Brilliant Red M5B reactive dye by exhaust dyeing at neutral pH 87

Figure 2.13: Effect of concentration of cross-linking agent on the dyeing of pretreated cotton with Procion Brilliant Red H7B reactive dye by exhaust dyeing at neutral pH 87

Figure 2.14: Effect of concentration of cross-linking agent on the dyeing of pretreated cotton with Remazol Brilliant Violet 5R reactive dye by exhaust dyeing at neutral pH 88

Figure 2.15: Effect of concentration of cross-linking agent on the dyeing of pretreated cotton with Procion Red HE-3B reactive dye by exhaust dyeing at neutral pH 88

Figure 2.16: Effect of concentration of cross-linking agent on the dyeing of pretreated cotton with Benzafix Orange ME-2RL reactive dye by exhaust dyeing at neutral pH 89

Figure 2.17: Effect of concentration of cross-linking agent on the dyeing of pretreated cotton with Procion Brilliant Red M5B reactive dye by pad-dry-cure dyeing at neutral pH 89

Figure 2.18: Effect of concentration of cross-linking agent on the dyeing of pretreated cotton with Procion Brilliant Red H7B reactive dye by pad-dry-cure dyeing at neutral pH 90

Figure 2.19: Effect of concentration of cross-linking agent on the dyeing of pretreated cotton with Remazol Brilliant Violet 5R reactive dye by pad-dry-cure dyeing at neutral pH 90

Figure 2.20: Effect of concentration of cross-linking agent on the dyeing of pretreated cotton with Procion Red HE-3B reactive dye by pad-dry-cure dyeing at neutral pH 91

Figure 2.21: Effect of concentration of cross-linking agent on the dyeing of pretreated cotton with Benzafix Orange ME-2RL reactive dye by pad-dry-cure dyeing at neutral pH 91

Figure 2.22: Infra red spectra of (a) Pure cellulose (untreated cotton); (b) Cotton treated with PAA\textsubscript{m} and C I agent; (c) Cotton treated with PAA\textsubscript{m} and C II agent; (d) Cotton treated with PAA\textsubscript{m} and C III agent; (e) Cotton treated with PAA\textsubscript{m} and C IV agent. 98
Figure 2.23: Infra red spectra obtained by subtracting spectrum of untreated cotton (a) from that of (b') Cotton treated with PAA, and C I agent; (c') Cotton treated with PAA and C II agent; (d') Cotton treated with PAA and C III agent; (e') Cotton treated with PAA and C IV agent.

Figure 2.24: Schematic representation of formation of dye-fibre bond through polymer cross-link

Figure 2.25: Comparison of colour strength of various reactive dyes applied by polyacrylamide-aided neutral exhaust dyeing method

Figure 2.26: Comparison of colour strength of various reactive dyes applied by polyacrylamide-aided neutral pad-dry-cure dyeing methods

Figure 2.27: Comparison of colour strength of various reactive dyes applied by polyacrylamide-aided neutral pad-dry-steam dyeing methods

CHAPTER 3

Figure 3.1: Schematic representation of Poly(acrylic acid)'in relaxed configuration

Figure 3.2: Polyanion of PAC in aqueous medium

Figure 3.3: Schematic representation of stretched configuration of potassium salt of poly(acrylic acid) dissolved in water

Figure 3.4: Crosslinking agent, Trimethylolpropanetriacrylate

Figure 3.5: Comparison of a dry cross-linked polymer with a cross-linked polymer swollen in solvent

Figure 3.6: Donnan type equilibrium of a swollen anionic polyelectrolyte

Figure 3.7: Infra-red spectra of prepared Polyacrylic acid polymer

Figure 3.8: Effect of concentration of PAA on the dyeing of pretreated cotton with Procion Brilliant Red M5B reactive dye by exhaust dyeing at neutral pH.

Figure 3.9: Effect of concentration of PAA on the dyeing of pretreated cotton with Procion Brilliant Red H7B reactive dye by exhaust dyeing at neutral pH.

Figure 3.10: Effect of concentration of PAA on the dyeing of pretreated cotton with Remazol Brilliant Violet 5R reactive dye by exhaust dyeing at neutral pH. 151

Figure 3.11: Effect of concentration of PAA on the dyeing of pretreated cotton with Procion Red HE-3B reactive dye by exhaust dyeing at neutral pH. 152

Figure 3.12: Effect of concentration of PAA on the dyeing of pretreated cotton with Benzafix Orange ME-2RL reactive dye by exhaust dyeing at neutral pH

Figure 3.13: Effect of concentration of PAA on the dyeing of pretreated cotton with Procion Brilliant Red M5B reactive dye by pad-dry-cure dyeing at neutral pH

Figure 3.14: Effect of concentration of PAA on the dyeing of pretreated cotton with Procion Brilliant Red H7B reactive dye by pad-dry-cure dyeing at neutral pH

Figure 3.15: Effect of concentration of PAA on the dyeing of pretreated cotton
with Remazol Brilliant Violet 5R reactive dye by pad-dry-cure dyeing at neutral pH

Figure 3.16: Effect of concentration of PAA on the dyeing of pretreated cotton with Procion Red HE-3B reactive dye by pad-dry-cure dyeing at neutral pH 156

Figure 3.17: Effect of concentration of PAA on the dyeing of pretreated cotton with Benzafix Orange ME-2RL reactive dye by pad-dry-cure dyeing at neutral pH 157

Figure 3.18: Effect of concentration of cross-linking agent on the dyeing of pretreated cotton with Procion Brilliant Red M5B reactive dye by exhaust dyeing at neutral pH. 161

Figure 3.19: Effect of concentration of cross-linking agent on the dyeing of pretreated cotton with Procion Brilliant Red H7B reactive dye by exhaust dyeing at neutral pH. 161

Figure 3.20: Effect of concentration of cross-linking agent on the dyeing of pretreated cotton with Remazol Brilliant Violet 5R reactive dye by exhaust dyeing at neutral pH. 162

Figure 3.21: Effect of concentration of cross-linking agent on the dyeing of pretreated cotton with Procion Red HE-3B reactive dye by exhaust dyeing at neutral pH. 162

Figure 3.22: Effect of concentration of cross-linking agent on the dyeing of pretreated cotton with Benzafix Orange ME-2RL reactive dye by exhaust dyeing at neutral pH. 163

Figure 3.23: Effect of concentration of cross-linking agent on the dyeing of pretreated cotton with Procion Brilliant Red M5B reactive dye by pad-dry-cure dyeing at neutral pH. 166

Figure 3.24: Effect of concentration of cross-linking agent on the dyeing of pretreated cotton with Procion Brilliant Red H7B reactive dye by pad-dry-cure dyeing at neutral pH. 166

Figure 3.25: Effect of concentration of cross-linking agent on the dyeing of pretreated cotton with Remazol Brilliant Violet 5R reactive dye by pad-dry-cure dyeing at neutral pH. 167

Figure 3.26: Effect of concentration of cross-linking agent on the dyeing of pretreated cotton with Procion Red HE-3B reactive dye by pad-dry-cure dyeing at neutral pH. 167

Figure 3.27: Effect of concentration of cross-linking agent on the dyeing of pretreated cotton with Benzafix Orange ME-2RL reactive dye by pad-dry-cure dyeing at neutral pH. 168

CHAPTER 4

Figure 4.1: IR spectrum of (a) untreated (parent) PAN waste polymer and (b) hydrolyzed PAN (PAN$_{\text{hyd}}$) waste polymer 214

Figure 4.2: Effect of concentration of PAN$_{\text{hyd}}$ on the dyeing of pretreated cotton with Procion Brilliant Red M5B reactive dye by exhaust dyeing at neutral pH. 220
Figure 4.3: Effect of concentration of PAN$_{hyd}$ on the dyeing of pretreated cotton with Procion Brilliant Red H7B reactive dye by exhaust dyeing at neutral pH.

Figure 4.4: Effect of concentration of PAN$_{hyd}$ on the dyeing of pretreated cotton with Remazol Brilliant Violet 5R reactive dye by exhaust dyeing at neutral pH.

Figure 4.5: Effect of concentration of PAN$_{hyd}$ on the dyeing of pretreated cotton with Procion Brilliant Red M5B reactive dye by pad-dry-cure dyeing at neutral pH.

Figure 4.6: Effect of concentration of PAN$_{hyd}$ on the dyeing of pretreated cotton with Procion Brilliant Red H7B reactive dye by pad-dry-cure dyeing at neutral pH.

Figure 4.7: Effect of concentration of PAN$_{hyd}$ on the dyeing of pretreated cotton with Remazol Brilliant Violet 5R reactive dye by pad-dry-cure dyeing at neutral pH.

Figure 4.8: Effect of concentration of cross-linking agent on the dyeing of pretreated cotton with Procion Brilliant Red M5B reactive dye by exhaust dyeing at neutral pH.

Figure 4.9: Effect of concentration of cross-linking agent on the dyeing of pretreated cotton with Procion Brilliant Red H7B reactive dye by exhaust dyeing at neutral pH.

Figure 4.10: Effect of concentration of cross-linking agent on the dyeing of pretreated cotton with Remazol Brilliant Violet 5R reactive dye by exhaust dyeing at neutral pH.

Figure 4.11: Effect of concentration of cross-linking agent on the dyeing of pretreated cotton with Procion Brilliant Red M5B reactive dye by pad-dry-cure dyeing at neutral pH.

Figure 4.12: Effect of concentration of cross-linking agent on the dyeing of pretreated cotton with Procion Brilliant Red H7B reactive dye by pad-dry-cure dyeing at neutral pH.

Figure 4.13: Effect of concentration of cross-linking agent on the dyeing of pretreated cotton with Remazol Brilliant Violet 5R reactive dye by pad-dry-cure dyeing at neutral pH.

Figure 4.14: Infra red spectra of (a) Pure cellulose (untreated cotton); (b) Cotton treated with PAN$_{hyd}$ and C I agent; (c) Cotton treated with PAN$_{hyd}$ and C II agent; (d) Cotton treated with PAN$_{hyd}$ and C III agent; (e) Cotton treated with PAN$_{hyd}$ and C IV agent.

Figure 4.15: Infra red spectra obtained by subtracting spectrum of untreated cotton (a) from that of (b') Cotton treated with PAN$_{hyd}$ and C I agent; (c') Cotton treated with PAN$_{hyd}$ and C II agent; (d') Cotton treated with PAN$_{hyd}$ and C III agent; (e') Cotton treated with PAN$_{hyd}$ and C IV agent.

Figure 4.16: Comparison of Colour strength of various reactive dyes applied by PAN$_{hyd}$-aided neutral exhaust dyeing method.

Figure 4.17: Comparison of colour strength of various reactive dyes.
applied by PANhyd-aided neutral pad-dry-cure dyeing methods

Figure 4.18: Comparison of colour strength of various reactive dyes applied by PANhyd-aided neutral pad-dry-steam dyeing methods 256

CHAPTER 5
Figure 5.1: Fixation and hydrolysis of a typical fibre reactive dye 263
Figure 5.2: Relative reactivities of reactive dyes for cellulosic fibres 264

CHAPTER 6
Figure 6.1: DSC heating curve for Untreated (Parent) cotton 330
Figure 6.2: DSC heating curve for (a) Untreated cotton, (b) Cotton treated with PAA_m alone, (c) Cotton treated with PAA_m + Cl, (d) Cotton treated with PAA_m + CII, (e) Cotton treated with PAA_m + CIII, (f) Cotton treated with PAA_m + CIV 331
Figure 6.3: DSC heating curve for (a) Untreated cotton, (b) Cotton treated with PAA alone, (c) Cotton treated with PAA + Cl, (d) Cotton treated with PAA + CII, (e) Cotton treated with PAA + CIII, (f) Cotton treated with PAA + CIV 332
Figure 6.4: DSC heating curve for (a) Untreated cotton, (b) Cotton treated with PANhyd alone, (c) Cotton treated with PANhyd + Cl, (d) Cotton treated with PANhyd + CII, (e) Cotton treated with PANhyd + CIII, (f) Cotton treated with PANhyd + CIV 333
Figure 6.5 a: SEM Micrograph of the surface of untreated cellulose membrane 335
Figure 6.5 b: SEM Micrograph of the surface of the membrane of cellulose treated with PAA/C II agent 335
Figure 6.5 c: SEM Micrograph of the surface of the membrane of cellulose treated with PAA/C III agent 336
Figure 6.5 d: SEM Micrograph of the surface of the membrane of cellulose treated with PAA/C IV agent 336
Figure 6.5 e: SEM Micrograph of the surface of the membrane of cellulose treated with PAA/C I agent and Procion Blue H5R (MCT) reactive dye 337

XII