CONTENTS OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CHAPTER 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Table 1.1: Important reactive systems</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>CHAPTER 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Table 2.1: Characteristics of Reactive dyes</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>Table 2.2: List of chemicals and auxiliaries used</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>Table 2.3: Characteristic frequencies of synthesized polyacrylamide polymer gel</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>Table 2.4: Characterization of various cross-linking agents</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>Table 2.5: Colour strength (in terms of K/S values) of cotton fabric pretreated with different concentrations of polyacrylamide and 5 gpl of cross-linking agent and subsequently dyed by exhaustion process</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>Table 2.6 Colour strength (in terms of K/S values) of cotton fabric pretreated with different concentrations of polyacrylamide and 5 gpl of cross-linking agent and subsequently dyed by pad-dry-cure process</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>Table 2.7 Colour strength (in terms of K/S values) of cotton fabric pretreated with optimum concentration of polyacrylamide along with different concentrations of cross-linking agents and subsequently dyed by exhaustion process</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>Table 2.8 Colour strength (in terms of K/S values) of cotton fabric pretreated with optimum concentration of polyacrylamide along with different concentrations of cross-linking agents and subsequently dyed by pad-dry-cure process</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td>Table 2.9: Mass add-on of cotton sample treated with optimum concentration of Polyacrylamide and cross-linking agent</td>
<td>94</td>
</tr>
<tr>
<td></td>
<td>Table 2.10: Comparative statement of bands obtained from Infra-Red Spectroscopy of various treated and untreated cotton samples</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>Table 2.11: Colour strength (in terms of K/S values) for cotton fabric dyed with different percent shades using reactive dyes by exhaustion dyeing process</td>
<td>101</td>
</tr>
<tr>
<td></td>
<td>Table 2.12: Colour strength (in terms of K/S values) for cotton fabric dyed with different percent shades using reactive dyes by pad-dry-cure dyeing process</td>
<td>102</td>
</tr>
<tr>
<td></td>
<td>Table 2.13 Colour strength (in terms of K/S values) of the cotton fabric dyed with various reactive dyes for 2 % shade by exhaustion process</td>
<td>119</td>
</tr>
<tr>
<td></td>
<td>Table 2.14 Colour strength (in terms of K/S values) of the cotton fabric dyed with various reactive dyes for 2 % shade by pad-dry-cure process</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>Table 2.15 Colour strength (in terms of K/S values) of the cotton fabric dyed with various reactive dyes for 2 % shade by pad-dry steam process</td>
<td>124</td>
</tr>
</tbody>
</table>
Table 2.16 Fastness properties of cotton fabric dyed with various reactive dyes using exhaust dyeing method

Table 2.17 Fastness properties of cotton fabric dyed with various reactive dyes using pad-dry-cure dyeing method

Table 2.18 Fastness properties of cotton fabric dyed with various reactive dyes using pad-dry-steam dyeing method

Table 2.19: Colour strength values of dyed samples to visualize the stability of the pretreatment bath

Table 2.20: Reflectance values for various admixtures of PAAm polymer, cross-linking agents and reactive dyes

CHAPTER 3

Table 3.1: Characteristic frequencies of synthesized polyacrylic acid polymer

Table 3.2: Colour strength (in terms of K/S values) of cotton fabric pretreated with different concentrations of polyacrylic acid and 5 gpl of cross-linking agent and subsequently dyed by exhaustion process

Table 3.3: Colour strength (in terms of K/S values) of cotton fabric pretreated with different concentrations of polyacrylic acid and 5 gpl of cross-linking agent and subsequently dyed by pad-dry-cure process

Table 3.4: Colour strength (in terms of K/S values) of cotton fabric pretreated with optimum concentration of polyacrylic acid along with different concentrations of cross-linking agents and subsequently dyed by exhaustion process

Table 3.5: Colour strength (in terms of K/S values) of cotton fabric pretreated with optimum concentration of polyacrylic acid along with different concentrations of cross-linking agents and subsequently dyed by pad-dry-cure process

Table 3.6: Mass add-on of cotton samples treated with optimum concentrations of PAA and cross-linking agent

Table 3.7: Comparative statement of bands obtained from Infra-Red Spectroscopy of various treated and untreated cotton samples

Table 3.8: Colour strength (in terms of K/S values) for cotton fabric dyed with different percent shades using reactive dyes by exhaustion dyeing process

Table 3.9: Colour strength (in terms of K/S values) for cotton fabric dyed with different percent shades using reactive dyes by pad-dry-cure dyeing process

Table 3.10: Colour strength (in terms of K/S values) of the cotton fabric dyed with various reactive dyes for 2 % shade by exhaustion process

Table 3.11: Colour strength (in terms of K/S values) of the cotton fabric dyed with various reactive dyes for 2 % shade by pad-dry-cure process

Table 3.12: Colour strength (in terms of K/S values) of the cotton fabric dyed with various reactive dyes for 2 % shade by pad-dry-steam process

Table 3.13: Fastness properties of cotton fabric dyed with various reactive
dyes using exhaust dyeing method
Table 3.14: Fastness properties of cotton fabric dyed with various reactive dyes using pad-dry-cure dyeing method 198
Table 3.15: Fastness properties of cotton fabric dyed with various reactive dyes using pad-dry-steam dyeing method 199
Table 3.16: Colour strength values of dyed samples to visualize the stability of the pretreatment bath 200
Table 3.17: Reflectance values for various admixtures of PAAm polymer, cross-linking agents and reactive dyes 201

CHAPTER 4
Table 4.1: Characteristics of Reactive dyes 209
Table 4.2: Important frequencies and assignments for special features in the IR spectra of original and hydrolyzed PAN waste polymers 213
Table 4.3: Colour strength (in terms of K/S values) of cotton fabric pretreated with different concentrations of hydrolyzed polyacrylonitrile and 5 gpl of cross-linking agent and subsequently dyed by exhaustion and pad-dry-cure dyeing processes 219
Table 4.4: Colour strength (in terms of K/S values) of cotton fabric pretreated with optimum concentration of hydrolyzed polyacrylonitrile along with different concentrations of cross-linking agent and subsequently dyed by exhaustion and pad-dry-cure dyeing processes 227
Table 4.5: Mass add-on of cotton samples treated with optimum concentrations of PANhyd and cross-linking agent 232
Table 4.6: Comparative statement of bands obtained from Infra-Red Spectroscopy of various treated and untreated cotton samples 235
Table 4.7: Colour strength (in terms of K/S values) of cotton fabric dyed with different percent shades using reactive dyes by exhaustion dyeing process 241
Table 4.8: Colour strength (in terms of K/S values) of cotton fabric dyed with different percent shades using reactive dyes by pad-dry-cure dyeing process 242
Table 4.9: Colour strength (in terms of K/S values) of the cotton fabric dyed with various reactive dyes for 2 % shade by exhaustion process 253
Table 4.10: Colour strength (in terms of K/S values) of the cotton fabric dyed with various reactive dyes for 2 % shade by pad-dry-cure process 254
Table 4.11: Colour strength (in terms of K/S values) of the cotton fabric dyed with various reactive dyes for 2 % shade by pad-dry steam process 255
Table 4.12: Fastness properties of cotton fabric dyed with various reactive dyes using exhaust dyeing method 258
Table 4.13: Fastness properties of cotton fabric dyed with various reactive dyes using pad-dry-cure dyeing method 259
Table 4.14: Fastness properties of cotton fabric dyed with various reactive dyes using pad-dry-steam dyeing method 260
CHAPTER 5

Table 5.1: Effect of Polyacrylamide polymer pretreatment on dyebath exhaustion for various dyes applied on cotton by exhaust dyeing method

Table 5.2: Effect of Polyacrylic acid polymer pretreatment on dyebath exhaustion for various dyes applied on cotton by exhaust dyeing method

Table 5.3: Effect of Hydrolyzed Polyacrylonitrile waste polymer pretreatment on dyebath exhaustion for various dyes applied on cotton by exhaust dyeing method

Table 5.4: Effect of Polyacrylamide polymer pretreatment on fixation properties of various dyes applied on cotton by exhaust dyeing method

Table 5.5: Effect of Polyacrylic acid polymer pretreatment on fixation properties of various dyes applied on cotton by exhaust dyeing method

Table 5.6: Effect of Hydrolyzed Polyacrylonitrile waste polymer pretreatment on fixation properties of various dyes applied on cotton by exhaust dyeing method

Table 5.7: Effect of Polyacrylamide polymer pretreatment on degree of fixation of various dyes applied on cotton by pad-dry-cure dyeing method

Table 5.8: Effect of Polyacrylic acid polymer pretreatment on degree of fixation of various dyes applied on cotton by pad-dry-cure dyeing method

Table 5.9: Effect of Hydrolyzed Polyacrylonitrile waste polymer pretreatment on degree of fixation of various dyes applied on cotton by pad-dry-cure dyeing method

Table 5.10: Effect of Polyacrylamide polymer pretreatment on degree of fixation of various dyes applied on cotton by pad-dry-steam dyeing method

Table 5.11: Effect of Polyacrylic acid polymer pretreatment on degree of fixation of various dyes applied on cotton by pad-dry-steam dyeing method

Table 5.12: Effect of Hydrolyzed Polyacrylonitrile waste polymer pretreatment on degree of fixation of various dyes applied on cotton by pad-dry-steam dyeing method

Table 5.13: Comparative statement for the degree of fixation for various reactive dyes applied by various dyeing method

CHAPTER 6

Table 6.1: Nitrogen content values of various treated sample

Table 6.2: Tensile properties of Polyacrylamide treated and subsequently

IV
Table 6.3: Tensile properties of Polyacrylic acid treated and subsequently dyed cotton fabric

Table 6.4: Tensile properties of hydrolyzed Polyacrylonitrile treated and subsequently dyed cotton fabric

Table 6.5: Comparison of crease recovery for treated and untreated cotton

Table 6.6: Comparison of crease recovery of cotton sample dyed with reactive dyes by various dyeing sequences

Table 6.7: DSC results of untreated cotton and various treated cotton samples

Table 6.8: Various properties of untreated and treated cotton samples

Table 6.9: Effluent properties for conventional and polymer-aided neutral dyeing methods

CHAPTER 7

Table 7.1: Characteristics of Reactive dyes

Table 7.2: Colour strength (in terms of K/S values) of the polyacrylamide treated cotton fabric dyed with various reactive dyes for 2% shade using exhaustion dyeing process

Table 7.3: Colour strength (in terms of K/S values) of the polyacrylic acid treated cotton fabric dyed with various reactive dyes for 2% shade using exhaustion dyeing process

Table 7.4: Colour strength (in terms of K/S values) of the hydrolyzed polyacrylonitrile treated cotton fabric dyed with various reactive dyes for 2% shade using exhaustion dyeing process

Table 7.5: Colour strength (in terms of K/S values) of the polyacrylamide treated cotton fabric dyed with various reactive dyes for 2% shade using pad-dry-cure dyeing process

Table 7.6: Colour strength (in terms of K/S values) of the polyacrylic acid treated cotton fabric dyed with various reactive dyes for 2% shade using pad-dry-cure dyeing process

Table 7.7: Colour strength (in terms of K/S values) of the hydrolyzed polyacrylonitrile treated cotton fabric dyed with various reactive dyes for 2% shade using pad-dry-cure dyeing process

Table 7.8: Colour strength (in terms of K/S values) of the polyacrylamide treated cotton fabric dyed with various reactive dyes for 2% shade using pad-dry-steam dyeing process

Table 7.9: Colour strength (in terms of K/S values) of the polyacrylic acid treated cotton fabric dyed with various reactive dyes for 2% shade using pad-dry-steam dyeing process

Table 7.10: Colour strength (in terms of K/S values) of the hydrolyzed polyacrylonitrile treated cotton fabric dyed with various reactive dyes for 2% shade using pad-dry-steam dyeing process

Table 7.11: Fastness properties of polyacrylamide treated cotton fabric dyed with various reactive dyes using exhaust dyeing method

Table 7.12: Fastness properties of polyacrylic acid treated cotton fabric dyed with various reactive dyes using exhaust dyeing method

Table 7.13: Fastness properties of hydrolyzed polyacrylonitrile treated cotton fabric...
cotton fabric dyed with various reactive dyes using exhaust dyeing method

Table 7.14-A: Fastness properties of polyacrylamide treated cotton fabric dyed with various reactive dyes using pad-dry-cure dyeing method

Table 7.14-B: Fastness properties of polyacrylamide treated cotton fabric dyed with various reactive dyes using pad-dry-cure dyeing method

Table 7.15-A: Fastness properties of polyacrylic acid treated cotton fabric dyed with various reactive dyes using pad-dry-cure dyeing method

Table 7.15-B: Fastness properties of polyacrylic acid treated cotton fabric dyed with various reactive dyes using pad-dry-cure dyeing method

Table 7.16-A: Fastness properties of hydrolyzed polyacrylonitrile treated cotton fabric dyed with various reactive dyes using pad-dry-cure dyeing method

Table 7.16-B: Fastness properties of hydrolyzed polyacrylonitrile treated cotton fabric dyed with various reactive dyes using pad-dry-cure dyeing method

Table 7.17: Fastness properties of polyacrylamide treated cotton fabric dyed with various reactive dyes using pad-dry-steam dyeing method

Table 7.18: Fastness properties of polyacrylic acid treated cotton fabric dyed with various reactive dyes using pad-dry-steam dyeing method

Table 7.19: Fastness properties of hydrolyzed polyacrylonitrile treated cotton fabric dyed with various reactive dyes using pad-dry-steam dyeing method

SUMMARY TABLES

CHAPTER 2

Summary Table 2.1: Optimum concentration of polyacrylamide during pretreatment

Summary Table 2.2: Optimum concentration of various cross-linking agents during pretreatment

CHAPTER 3

Summary Table 3.1: Optimum concentration of polyacrylic acid during pretreatment

Summary Table 3.2: Optimum concentration for various cross-linking agents during pretreatment

CHAPTER 4

Summary Table 4.1: Optimum concentration of hydrolyzed polyacrylonitrile polymer during pretreatment

Summary Table 4.2: Optimum concentration for various cross-linking agents during pretreatment