CONTENTS

LIST OF TABLES	I - VI
LIST OF FIGURES	VII - XII
ABBREVIATIONS	XIII

CHAPTER 1 – INTRODUCTION, LITERATURE SURVEY & SCOPE OF THE PRESENT INVESTIGATION 1-52

1.1 GENERAL INTRODUCTION 1-2
1.2 STRUCTURE OF COTTON 2-5
1.2.1 Molecular structure of cotton cellulose 3-5
1.3 MODIFICATION OF COTTON (CELLULOSE) 6
1.4 MODIFICATION OF CELLULOSE DUE TO CHEMICAL REACTIONS 6-11
 1.4.1 Oxidation treatments for cellulose modification 7
 1.4.2 Formation of cellulose xanthate 8
 1.4.3 Esterification of cotton (cellulose) 8-9
 1.4.4 Etherification of cotton (cellulose) 9-10
 1.4.5 Modification of cellulose due to its reaction with aldehyde 10-11
1.5 MODIFICATION OF CELLULOSE TO ENHANCE DYEABILITY 11-28
 1.5.1 Cellulose modification by grafting techniques 11-13
 1.5.2 Cationization of cotton for improved dyeability 13
 1.5.3 Reaction with cationic reactant molecules 14-21
 1.5.3.1 Modification with 2-chloroethyl diethylamine 14
 1.5.3.2 Modification with Quaternary ammonium compounds 14 - 15
 1.5.3.3 Modification with gycidyl trimethyl ammonium chloride (Glytac A) 15
 1.5.3.4 Modification with Chlorotriazine type quaternary compounds 16-17
1.5.3.5 Modification with N-Methylol Acrylamide (NMA) 17-18
1.5.3.6 Modification with Polyepichlorohydrin (PECH) dimethylamine 19
1.5.3.7 Modification with DCPEAT compound 19-20
1.5.3.8 Modification with Chloropropionyl chloride (CPC) 20-21
1.5.3.9 Modification with Nicotonyl Thio Glycollate (NTG) 21

1.5.4 Application of Cationic polymers 22-28
 1.5.4.1 Modification with Quaternary ammonium substituted polymers 22-24
 1.5.4.2 Treatment with other polymeric compounds 25-26
 1.5.4.3 Modification of cotton by treatment with polycarboxylic acid 27-28

1.6 REACTIVE DYES 28-36
 1.6.1 Reactive systems 29-30
 1.6.2 Structure and substantivity of reactive dyes 31-32
 1.6.3 Factors affecting Reactive dye uptake 32
 1.6.4 Classification of Reactive dyes 32-33
 1.6.5 Dyeing performance of Reactive dyes 33-36
 1.6.6 Physical form and handling of reactive dyes 36

1.7 RECENT DEVELOPMENTS IN REACTIVE DYES 37- 40

1.8 ADVANCEMENT IN APPLICATION TECHNOLOGY OF REACTIVE DYES 40-44

1.9 SCOPE OF THE PRESENT WORK 44-45

REFERENCES 46-52

CHAPTER 2 – POLYACRYLAMIDE-AIDED NEUTRAL DYEING OF REACTIVE DYES ON COTTON 53 - 137

2.1 INTRODUCTION 53

2.2 MATERIALS AND EXPERIMENTAL METHODS 54
 2.2.1 Materials 54
 2.2.1.1 Fabric 54
 2.2.1.2 Reactive dyes 54-55
 2.2.1.3 Chemicals and auxiliaries used 54
 2.2.2 Experimental methods 54 - 62
2.2.2.1 Preparation of the fabric
2.2.2.2 Synthesis of Polyacrylamide polymer
2.2.2.3 Polymer characterization
2.2.2.4 Selection, synthesis and specifications of cross-linking agents
2.2.2.5 Synthesis of Glycerol 1, 3-dichlorohydrin

2.2.3 Dyeing procedures
2.2.3.1 Optimization of conditions for Pretreatment
2.2.3.2 Concentration study of reactive dyes
2.2.3.3 Neutral dyeing of reactive dyes using various dyeing sequences

2.2.4 Analysis of the dyed samples
2.2.4.1 Measurement of colour strength (K/S) values
2.2.4.2 Fastness properties
2.2.4.3 Infra red analysis

2.3 RESULTS AND DISCUSSION
2.3.1 Optimization of concentration of polyacrylamide polymer for pretreatment
2.3.2 Optimization of concentration of the cross-linking agent for pretreatment
2.3.3 Effect of polymeric pretreatment on physical properties of cotton substrate
2.3.4 Infra-red studies of samples treated at optimized conditions
2.3.5 Dyeing performance of various cross-linking agents at different concentrations of reactive dyes in bath
2.3.6 Possibilities of Reaction mechanisms with polyacrylamide-aided neutral dyeing of reactive dyes
2.3.6.1 Polymer-aided neutral dyeing of modified cotton with \(\text{PAA}_m \) and epichlorohydrin
2.3.6.2 Polymer-aided neutral dyeing of modified cotton with \(\text{PAA}_m \) and hydrazine hydrate
2.3.6.3 Polymer-aided neutral dyeing of modified cotton with \(\text{PAA}_m \) and Glycerol 1,3-dichlorohydrin
2.3.6.4 Polymer-aided neutral dyeing of modified cotton with \(\text{PAA}_m \) and Hexamethylene tetramine-Hydroquinone (HMTA-HQ)
2.3.6.5 Probable dyeing mechanism for the application of Vinyl sulphone based reactive dyes in \(\text{PAA}_m \)-aided neutral dyeing approach
2.3.7 Polyacrylamide-aided neutral dyeing of reactive dyes by various dyeing sequences 117 - 126

2.3.8 Effect of neutral dyeing of reactive dyes on the fastness properties of the dyed cotton 127 - 130

2.3.9 Stability of the polyacrylamide and cross-linking agent admixture Solution 127 - 133

2.3.10 Solution study of polyacrylamide solution in the presence of cross-linking agent and reactive dye 133 - 135

REFERENCES 136 137

CHAPTER 3 – POLYACRYLIC ACID-AIDED NEUTRAL DYEING OF REACTIVE DYES ON COTTON 138 - 206

3.1 INTRODUCTION 138 - 142

3.2 MATERIALS & EXPERIMENTAL METHODS 143 - 145

3.2.1 Materials 143

3.2.2 Experimental work

3.3 RESULTS AND DISCUSSION 146 - 204

3.3.1 Optimization of concentration of the polymer for pretreatment 148 - 158

3.3.2 Optimisation of concentration of the cross-linking agents for pretreatment 158 - 169

3.3.3 Effect of polymeric pretreatment on the physical properties of cotton substrate 169 - 171

3.3.4 Infra-red studies of samples treated at optimum conditions 172 - 175

3.3.5 Dyeing performance of various cross-linking agents at different concentrations of reactive dyes in bath 176 - 182

3.3.6 Possibilities of Reaction mechanism for polymer-aided neutral dyeing of reactive dyes 182 - 189

3.3.6.1 Polymer-aided neutral dyeing of modified cotton with PAA and epichlorohydrin 183 - 184

3.3.6.2 Polymer-aided neutral dyeing of modified cotton
3.3.6.3 Polymer-aided neutral dyeing of modified cotton with PAA and Glycerol 1, 3-dichlorohydrin 186 - 187
3.3.6.4 Polymer-aided neutral dyeing of modified cotton with PAA and Hexamethylene tetramine-Hydroquinone (HMTA-HQ) 187 - 189

3.3.7 Neutral dyeing of reactive dyes by various dyeing techniques 190 - 196

3.3.8 Effect of neutral dyeing on the fastness properties of dyed cotton 196 - 200

3.3.9 Stability of the polyacrylic acid and cross-linking agent admixture solution 201 - 202

3.3.10 Solution study of polyacrylic acid solution in the presence of cross-linking agent and reactive dye 203 - 204

REFERENCES 205 - 206

CHAPTER 4 – UTILIZATION OF POLYACRYLONITRILE COPOLYMER WASTE TO FACILITATE NEUTRAL DYEING OF REACTIVE DYES ON COTTON 207 - 262

4.1 INTRODUCTION 207 - 209

4.2 MATERIALS & EXPERIMENTAL METHODS 209 - 215

4.2.1 Materials 209 - 210

4.2.2 Experimental methods 210 - 215

4.2.2.1 Hydrolysis of PAN waste polymer 210 - 211

4.2.2.2 Characterization of synthesized PAN_{hyd} polymer 211 - 214

4.2.2.3 Preparation of polymeric treatment liquor for PAN_{hyd} polymer 215

4.3 RESULTS AND DISCUSSION 215 - 260

4.3.1 Optimization of concentration of the PAN_{hyd} polymer and cross-linking agent(s) for pretreatment 215 - 231

4.3.1.1 Optimisation of concentration of the hydrolyzed PAN waste polymer for pretreatment 217 - 225

4.3.1.2 Optimisation of concentration of the cross-linking agent(s) for pretreatment 225 - 231

4.3.2 Effect of polymeric pretreatment on the physical properties of cotton substrate 231 - 232
4.3.3 Infra-red studies of samples treated at optimum conditions 233 – 237
4.3.4 Dyeing performance of various cross-linking agents at
different concentrations of reactive dyes in bath 238 - 244
4.3.5 Possibilities of Reaction mechanism for polymer-aided
neutral dyeing of reactive dyes 244 - 249
 4.3.5.1 Hydrolysis of nitrile groups into carboxylic acid groups 245 - 246
 4.3.5.2 Mechanism procedures for PAnhyd-aided neutral dyeing
with reactive dyes 246 – 249
4.3.6 Neutral dyeing of reactive dyes by various dyeing
Techniques 249 -256
4.3.7 Effect of neutral dyeing on the fastness properties
of dyed cotton 257 - 260
REFERENCES 261 - 262

CHAPTER 5 – STUDIES ON THE EFFICIENCY OF POLYMER-
AIRED NEUTRAL DYEING OF COTTON WITH
VARIOUS REACTIVE DYES 263 - 298

5.1 INTRODUCTION 263 – 268
 5.1.1 Mechanism of reaction of reactive groups 265 - 268
 5.1.1.1 Hydrolysis by water molecules and by hydroxide
 and hydroxonium ions 265 -266
 5.1.1.2 Alcoholsysis of reactive dyes 266
 5.1.1.3 Aminolysis of reactive dyes 267
 5.1.1.4 Reactions with textile fibres 267 -268
5.2 MATERIALS & EXPERIMENTAL METHODS 268- 269
 5.2.1 Materials 268
 5.2.1.1 Exhausted dye liquors 268
 5.2.1.2 Dyed fabric 268
 5.2.1.3 Chemicals 268
 5.2.2 Experimental methods 268 – 269
 5.2.2.1 Sample preparation for fixation studies 268 - 269
 5.2.3 Testing and Analysis 269
 5.2.3.1 Measurement of the degree of dye exhaustion on cotton 269
 5.2.3.2 Measurement of the degree of dye-fibre
 covalent bonding (fixation) on cotton 269
5.3 RESULTS AND DISCUSSION

5.3.1 Effect of polymeric treatment on percent exhaustion of various reactive dyes 270 - 276

5.3.2 Effect of polymeric treatment on the fixation properties of the reactive dye for exhaust dyeing process 276 - 281

5.3.3 Effect of polymeric treatment on degree of fixation of the reactive dye for pad-dry-cure dyeing process 282 - 287

5.3.4 Effect of polymeric treatment on degree of fixation of the reactive dye for pad-dry-steam dyeing process 287 - 293

5.3.5 Effect of various parameters on the degree of fixation for various reactive dyes applied by polymer-aided neutral dyeing concept 293 - 296

REFERENCES 297 - 298

CHAPTER 6 - STUDIES ON THE PHYSICO-MECHANICAL AND EFFLUENT CHARACTERISTICS OF POLYMER-AIDED NEUTRAL DYEING OF REACTIVE DYES ON COTTON 299 - 345

6.1 INTRODUCTION 299

6.2 MATERIALS & EXPERIMENTAL METHODS 300 - 306

6.2.1 Materials 300

6.2.2 Experimental work : Testing and Analysis 300 - 306

6.2.2.1 Determination of nitrogen content 300 - 301

6.2.2.2 Assessment of tensile properties 301

6.2.2.3 Measurement of crease recovery 301

6.2.2.4 Differential Scanning calorimetric measurements 301

6.2.2.5 Scanning Electron Microscopy (SEM) Analysis 302

6.2.2.6 Determination of Effluent characteristics 302 - 306

6.3 RESULTS AND DISCUSSION 306 - 342

6.3.1 Effect of polymeric treatment on nitrogen content value of the treated sample 307 - 315

6.3.2 Effect of polymeric treatment on the tensile properties of the treated sample 315 - 322

6.3.3 Effect of cross-linking on crease recovery of treated and dyed samples 323 - 327
6.3.4 Effect of polymeric treatment on thermal behaviour of cotton 327 – 333
6.3.5 Scanning Electron Microscopy (SEM) Analysis 334 – 338
6.3.6 Effect of various physico-mechanical properties on the cross-linking of cotton due to polymeric treatment 338 – 339
6.3.7 Effluent parameters for polymer-aided neutral dyeing of reactive dyes on cotton 340 – 342

REFERENCES 343 – 345

CHAPTER 7 – STUDIES ON THE POSSIBILITIES OF POLYMER-AIDED NEUTRAL DYEING OF COTTON WITH VARIOUS COMMERCIAL REACTIVE DYES 346 – 387
7.1 INTRODUCTION 346 – 347
7.2 MATERIALS & EXPERIMENTAL METHODS 348 – 351
4.2.1 Materials 348 – 351
4.2.2 Experimental methods 348
7.3 RESULTS AND DISCUSSION 352 – 386
7.3.1 Effect of polymer-aided neutral dyeing on the colour yield of reactive dyes applied by exhaust dyeing method 353 – 359
7.3.2 Effect of polymer-aided neutral dyeing on the colour yield of reactive dyes applied by pad-dry-cure dyeing method 360 – 365
7.3.3 Effect of polymer-aided neutral dyeing on the colour yield of reactive dyes applied by pad-dry-steam dyeing method 366 – 371
7.3.4 Effect of polymer-aided neutral dyeing on the fastness properties of commercial of reactive dyes applied by various dyeing sequences 371 – 384
7.3.5 Mill trial for polymer-aided neutral dyeing approach 385 – 386

REFERENCES 387

CHAPTER 8 – SUMMARY AND CONCLUSIONS 388 – 393
RESEARCH PUBLICATIONS AND PRESENTATIONS 394