CONTENTS

<table>
<thead>
<tr>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td>BONAFIDE CERTIFICATE</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iv</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>v</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF SYMBOLS AND ABBREVIATION</td>
<td>ix</td>
</tr>
<tr>
<td>1. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2. LITERATURE REVIEW</td>
<td>5</td>
</tr>
<tr>
<td>2.1 Cancer</td>
<td>5</td>
</tr>
<tr>
<td>2.2 Immunomodulators</td>
<td>6</td>
</tr>
<tr>
<td>2.3 Chemoprotective effects</td>
<td>6</td>
</tr>
<tr>
<td>2.4 Inflammation</td>
<td>7</td>
</tr>
<tr>
<td>2.5 Wound</td>
<td>8</td>
</tr>
<tr>
<td>2.6 Mechanism of Wound healing</td>
<td>8</td>
</tr>
<tr>
<td>2.7 Ulcerative Colitis</td>
<td>12</td>
</tr>
<tr>
<td>2.8 Decalepis hamiltonii</td>
<td>14</td>
</tr>
<tr>
<td>2.9 Solanum muricatum</td>
<td>17</td>
</tr>
</tbody>
</table>
3. PHYTOCHEMICAL SCREENING OF THE OF *Decalepis hamiltonii* AND *Solanum muricatum* METHANOLIC EXTRACT

3.1 Introduction 19

3.2 Materials and Methods 21
 3.2.1 Plant collection 21
 3.2.2 Preparation of Extract 21
 3.2.3 GC/MS analysis 22

3.3 Results 22
 3.3.1 GC/MS analysis of methanolic extract from *D. hamiltonii* 22
 3.3.2 GC/MS analysis of methanolic extract from *S. muricaum* 23

3.4 Discussion 29

4. INVESTIGATION OF THE IMMUNOMODULATORY AND CHEMOPROTECTIVE EFFECT OF *Decalepis hamiltonii* AND *Solanum muricatum*

4.1 Introduction 30

4.2 Materials and Methods 31
 4.2.1 Chemicals and Kits 31
 4.2.2 Preparation of extract 31
 4.2.3 Animals 31
 4.2.4 Experimental design for Immunomodulatory studies 32
4.2.5 Cyclophosphamide administration for chemoprotective Studies

4.2.6 Experimental design for Chemoprotective studies

4.2.7 Assessment of Immunomodulatory effect
 4.2.7.1 Hematological analysis
 4.2.7.2 Body weight and Relative organ weight
 4.2.7.3 Bone marrow cellularity and α-esterase activity
 4.2.7.4 Phagocytic Index

4.2.8 Assessment of chemoprotective effects
 4.2.8.1 Hematological analysis
 4.2.8.2 Bone marrow cellularity and α-esterase activity in mice
 4.2.8.3 Biochemical analysis

4.2.9 Statistical analysis

4.3 Results
 4.3.1 Hematological parameters of experimental animals
 4.3.2 Body weight and Relative organ weight of experimental animals
 4.3.3 Bone marrow cellularity and α-esterase activity of experimental animals
 4.3.4 Phagocytic index of experimental animals
4.3.5 Hematological parameters in CTX administrated animals 45

4.3.6 Relative organ weight, bone marrow cellularity and α-esterase activity after CTX administration 45

4.3.7 SGOT and SGPT levels after CTX administration 46

4.3.8 Urea and creatinine levels after CTX administration 47

4.4 Discussion 57

5. INVESTIGATION OF THE ANTI-INFLAMMATION AND WOUND HEALING EFFECT OF Decalepis hamiltonii AND Solanum muricatum

5.1 Introduction 61

5.2 Materials and Methods 63

5.2.1 Chemicals 63

5.2.2 Animals 63

5.2.3 Preparation of Extract 63

5.2.4 Preparation of Ointment 64

5.2.5 Experimental design for excision wound 64

5.2.6 Experimental design for Incision wound 64

5.2.7 Excision wound 65

5.2.8 Incision wound 65

5.2.9 Assessment of anti-inflammatory activity 66

5.2.9.1 Carrageenan model 66
5.2.9.2 Formaldehyde Model 66

5.2.10 Statistical Analysis 67

5.2.11 Histopathology 67

5.3 Results 67

5.3.1 Carrageenan and formaldehyde induced paw inflammation 67

5.3.2 Percentage of wound contraction 71

5.3.3 Effect of *D. hamiltonii* and *S. muricatum* on hydroxyproline content in excision wound model 71

5.3.4 Effect of *D. hamiltonii* and *S. muricatum* on hexosamine level in excision wound model 75

5.3.5 Effect of *D. hamiltonii* and *S. muricatum* on uronic acid level in excision wound model 75

5.3.6 Effect of *D. hamiltonii* and *S. muricatum* on the skin tensile strength during incision wound model 78

5.3.7 Histopathological study 78

5.4 Discussion 83

6. EFFECT OF *Decalepis hamiltonii* AND *Solanum muricatum* ON B16F-10 INDUCED SOLID TUMOUR MODEL

6.1 Introduction 86

6.2 Materials and Methods 87

6.2.1 Animals 87
6.2.2 Cell lines
6.2.3 Preparation and administration of plant extract
6.2.4 Induction of tumour
6.2.5 Experimental Groups
6.2.6 Assessment of anti-tumour activity
 6.2.6.1 Tumour volume
 6.2.6.2 Hematological parameters
 6.2.6.3 Biochemical parameters
6.2.7 Statistical analysis
6.3 Results
 6.3.1 Tumour volume during solid tumour development
 6.3.2 Hematological parameters during solid tumour development
 6.3.3 Serum NO and GGT level during solid tumour development
6.4 Discussion

7. EFFECT OF Decalepis hamiltonii AND Solanum muricatum ON EXPERIMENTAL METASTASIS

7.1 Introduction
7.2 Materials and methods
 7.2.1 Preparation and administration of plant extract
7.2.2 Animals 101
7.2.3 Cell lines 101
7.2.4 Induction of lung metastasis 102
7.2.5 Groups 102
7.2.6 Chemicals 102
7.2.7 ELISA kits 102
7.2.8 Assessment of metastasis 103
 7.2.8.1 Lung nodule formation 103
 7.2.8.2 Survival rate 103
 7.2.8.3 Biochemical studies 104
 7.2.8.4 Phagocytic index 104
 7.2.8.5 Histopathological studies 105
7.2.9 Statistical analysis 105

7.3 Results 105
 7.3.1 Macroscopical results 105
 7.3.2 Hydroxyproline, uronic acid and hexosamine concentration 106
 7.3.3 Serum sialic acid and GGT concentration 111
 7.3.4 Serum nitrite concentration 111
 7.3.5 iNOS and COX-2 quantification 115
 7.3.6 TNF-α, IL-1β, IL-6, GM-CSF and IL-2 level 115
 7.3.7 Phagocytic activity 116
7.3.8 Translocation of transcription factors 125
7.3.9 Histopathological results 125
7.4 Discussion 129

8. EFFECT OF Decalepis hamiltonii AND Solanum muricatum ON ACETIC ACID INDUCED ULCERATIVE COLITIS

8.1 Introduction 133
8.2 Materials and Methods 134
 8.2.1 Preparation and administration of plant extract 134
 8.2.2 Animals 135
 8.2.3 Chemicals 135
 8.2.4 Experimental setup 135
 8.2.5 Induction of colitis 136
 8.2.6 Assessments of colitis 136
 8.2.6.1 Macroscopic scoring 137
 8.2.6.2 Biochemical Studies 137
 8.2.6.3 Histopathological study 137
 8.2.6.4 Immunohistochemical study 137
 8.2.7 Statistical analysis 138
8.3 Results 138
 8.3.1 Macroscopical results 138
 8.3.2 Colon LPO level 138
 8.3.3 Colon GSH, SOD and GPx level 142
8.3.4 Colon NO, iNOS and COX-2 quantification
8.3.5 Colon TNF-α, MPO and LDH level
8.3.6 Translocation of Transcription Factor
 NF-κB (p65/p50)
8.3.7 Histopathological analysis
8.3.8 Immunostaining of iNOS and COX-2

8.4 Discussion

SUMMARY AND CONCLUSION

REFERENCES

LIST OF PUBLICATIONS

CURRICULUM VITAE

PUBLICATION REPRINTS