<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Location map of the Kalangi river basin</td>
<td>4</td>
</tr>
<tr>
<td>2.1</td>
<td>Geological map of the study area</td>
<td>11</td>
</tr>
<tr>
<td>2.2</td>
<td>A general view of a quartzite hill exhibiting scarp topography</td>
<td>15</td>
</tr>
<tr>
<td>2.3</td>
<td>A close-up view of a laterite exposures on the ground surface</td>
<td>15</td>
</tr>
<tr>
<td>2.4</td>
<td>A view of a fresh surface of fine-grained massive granite as revealed by quarrying and overlain by reddish weathered portion of granite</td>
<td>15</td>
</tr>
<tr>
<td>2.5</td>
<td>A close-up view of Nagari quartzites showing closely spaced horizontal bedding joints</td>
<td>17</td>
</tr>
<tr>
<td>2.6</td>
<td>A dolerite dyke cutting across granitic formation</td>
<td>17</td>
</tr>
<tr>
<td>2.7</td>
<td>Amphibolite exposure formed on a quartzite hill</td>
<td>17</td>
</tr>
<tr>
<td>2.8</td>
<td>Structural map of the study area</td>
<td>24</td>
</tr>
<tr>
<td>2.9</td>
<td>Relief map of the study area</td>
<td>27</td>
</tr>
<tr>
<td>2.10</td>
<td>Geomorphology map of the study area</td>
<td>31</td>
</tr>
<tr>
<td>2.11</td>
<td>A broad view of pediplain of the Kalangi river valley formed by the extensive median of the river The hill range in the background of the valley is capped by Nagari quartzites exhibiting escarpment.</td>
<td>29</td>
</tr>
<tr>
<td>2.12</td>
<td>A dry look of the Kalangi river course covered with loose boulders of varying size during summer</td>
<td>29</td>
</tr>
<tr>
<td>2.13</td>
<td>A view of the confluence of Kaleru and Kalangi tributaries which ultimately flows in a general easterly direction as Kalangi river with surface flow during rainy season.</td>
<td>29</td>
</tr>
<tr>
<td>2.14</td>
<td>Drainage map of the Kalangi river basin showing catchment of the important tributaries</td>
<td>35</td>
</tr>
<tr>
<td>2.15</td>
<td>Graph showing the linear relationship between stream order (U) and stream number (NU)</td>
<td>46</td>
</tr>
<tr>
<td>2.16</td>
<td>Graph showing the linear relationship between stream order and stream length (LU)</td>
<td>48</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>3.1</td>
<td>Deviation of rainfall from the mean at stations of a) Puttur, b) Satyavedu, c) Sriharikota, d) Srikalahasti, e) Sulurpet, f) Tada and g) Venkatagiri</td>
<td>60</td>
</tr>
<tr>
<td>3.2</td>
<td>Isohyetal map of the basin</td>
<td>62</td>
</tr>
<tr>
<td>3.3</td>
<td>Water balance parameters for a) Puttur, Satyavedu, Sriharikota, Srikalahasti, b) Sulurpet, Tada, Venkatagiri and Kalangi river basin</td>
<td>85</td>
</tr>
<tr>
<td>4.1</td>
<td>Water-table contour map for both wet and dry seasons</td>
<td>93</td>
</tr>
<tr>
<td>4.2</td>
<td>Family of Papadopulas-Coopers type curves used to determine T and S from aquifer performance test data</td>
<td>99</td>
</tr>
<tr>
<td>4.3</td>
<td>Time drawdown curves obtained for three large diameter wells.</td>
<td>103</td>
</tr>
<tr>
<td>5.1</td>
<td>Schlumberger arrangement of electrode configuration</td>
<td>115</td>
</tr>
<tr>
<td>5.2</td>
<td>Map showing vertical electrical sounding locations</td>
<td>118</td>
</tr>
<tr>
<td>5.3a-f</td>
<td>Schlumberger sounding curves</td>
<td>120</td>
</tr>
<tr>
<td>5.4</td>
<td>Bed-rock contour map of the study area</td>
<td>132</td>
</tr>
<tr>
<td>5.5a&b</td>
<td>VES curves after Schlumberger configuration by the sides of wells with well logs</td>
<td>135</td>
</tr>
<tr>
<td>5.6</td>
<td>Map showing favourable zones for groundwater exploration in the basin area</td>
<td>138</td>
</tr>
<tr>
<td>5.7</td>
<td>A profile showing the thickness of the sandy aquifer</td>
<td>140</td>
</tr>
<tr>
<td>6.1</td>
<td>Map showing location of water and soil samples</td>
<td>147</td>
</tr>
<tr>
<td>6.2</td>
<td>Chemical analysis of representative water samples shown in bar diagrams</td>
<td>175</td>
</tr>
<tr>
<td>6.3</td>
<td>Chemical analysis of representative water samples shown in stiff diagrams</td>
<td>177</td>
</tr>
<tr>
<td>6.4</td>
<td>Chemical analysis of representative water samples shown in pie diagrams</td>
<td>179</td>
</tr>
<tr>
<td>6.5a</td>
<td>Relationship between dissolved solids and specific conductance in wet season</td>
<td>181</td>
</tr>
<tr>
<td>6.5b</td>
<td>Relationship between dissolved solids and specific conductance in dry season</td>
<td>182</td>
</tr>
</tbody>
</table>
6.6 Map showing the iso contours of dissolved solids both for wet and dry seasons 184
6.7 Map showing the iso contours of specific conductance both for wet and dry seasons 186
6.8 Map showing the iso contours of per cent sodium both for wet and dry season 189
6.9 Rating of irrigation waters on the basis of electrical conductivity and per cent sodium (Wilcox, 1948) for both wet and dry season 192
6.10 Map showing the iso contours of sodium adsorption ratio for both wet and dry season 194
6.11 Rating of irrigation waters in relation to salinity hazard and sodium hazard (after U.S. salinity laboratory, 1954) 197
6.12 Analysis of groundwater and surface samples represented by three points plotted in a trilinear diagram (after Piper, 1953). 202
7.1 A dug well with a large diameter of about 12 meters The water table is almost at the surface as seen during wet season 213
7.2 A bore well sunk for the domestic purpose of a village is being utilized by a small former for cultivating a piece of land by hand pumping 213
7.3 A view of the newly constructed Telugu Ganga canal in the basin area, which provides water supply for irrigation 213
7.4 Land use/land cover map of the basin (interpreted using LANDSAT imagery) 219