FIGURES

(3 to 39)
Fig. 3. Mineralogical classification of the (a) Tithonian and (b) Kurnaa Sandstone formations.
FIG. 44: CUMULATIVE CURVES OF THE SANDSTONE OF THE TURA SANDSTONE FORMATION.
Fig. 48. Cumulative curves of the sandstone of the Tura Sandstone formation.
Fig. 4C. CUMULATIVE CURVES OF THE SANDSTONE OF THE TURA SANDSTONE FORMATION.
Fig. 4D. CUMULATIVE CURVES OF THE SANDSTONE OF THE TURA SANDSTONE FORMATION.
Fig. 5. GRAPH SHOWING THE RELATIONSHIPS BETWEEN ϕ_{Mz}, ϕ_{δ_1}, ϕ_{SK_1} AND ϕ_{KG} OF THE TURA SANDSTONE FORMATION.
Fig. 6. Mutual relationship between ϕM_z and ϕS_{j1} of the (A) and (B) and mutual relationship between ϕM_z and ϕS_{k1} of the (C) and (D).
Fig. 7. Mutual relationship between δ_1 and ϕ_{m2} showing river and beach environments of the (A) Tura and (B) Rewak sandstone formations and mutual relationship between δ_1 and ϕ_{sk1} showing river and beach environments of the (C) Tura and (D) Rewak sandstone formations.
Fig. 8: Mutual relationship between $\theta \delta_1$ and θM_2 showing river and dune environments of the (A) Tura and (B) Rewak Sandstone Formations and mutual relationship between θK_0 and $\theta S K_1$ of the (C) Tura and (D) Rewak Sandstone Formations.
Fig. 9. Mutual relationship between ϕ_{Mz} and ϕ_{sk}, showing river and beach environments of the (a) Tura and (b) Rewak sandstone formations and mutual relationship between ϕ_{Mz} and ϕ_{sk}, showing dune and beach environments of the (c) Tura and (d) Rewak sandstone formations.
Fig. 10. Mutual relationship between ϕ_M and ϕ_K of the (A) and (B) Rewak Sandstone Formation.

(A) Rewak Sandstone Formation

(B) Tura Sandstone Formation

Fig. 10. Mutual relationship between ϕ_M and ϕ_K of the (A) and (B) Tura Sandstone Formation.
Fig. 11. CM patterns of the Tura sandstone formation
Fig. 12. Textural Classification of the (A) Tura and (B) Rewak Sandstone
Fig. 13. Relationship between length and breadth of tourmaline and zircon in the (a,b) Turia and (c,d) Rewak sandstone formations.
Section 1
At the left bank of Simsong River (Songmong Siju)

INDEX:
- **Ferruginous Sandstone**
- **Sandstone & Shale**
- **Nummulitic Limestone**
- **Sandstone**

Figu 14A. Graph showing the stratigraphical distribution of insoluble residues, allochems and orthochems of the Siju Limestone formation.
Fig. 14b. Graph showing the stratigraphical distribution of insoluble residues, allochthons, and orthochoths of the Suju limestone formation.
Fig 15. Showing carbonate mineralogy of the (A) SITU Limestone Formation and (B) Rewak Limestone Formation.
Fig. 18: SUBTEXTURAL ROCK TYPES OF THE (A) SIJU LIMESTONE FORMATION AND (B) REVAK LIMESTONE FORMATION
Fig. 19a. Cumulative frequency curves showing sieve-size distribution plotted from thin-section data of the limestone of the Siju Limestone Formation.
Fig. 9B. CUMULATIVE FREQUENCY CURVES SHOWING SIEVE-SIZE DISTRIBUTION PLO TED FROM THIN-SECTION DATA OF THE LIMESTONE OF THE SIJU LIMESTONE FORMATION.
Fig. 19c. Cumulative frequency curves showing sieve-size distribution plotted from thin-section data of the limestone of the Siju limestone formation.
Figure 9d. Cumulative frequency curves showing sieve-size distribution plotted from thin-section data of the limestone of the Siju Limestone formation.
Fig. 20A. Cumulative frequency curves showing sieve-size distribution drawn from thin-section data of the crystal of the SHU limestone formation.
20B. CUMULATIVE FREQUENCY CURVES SHOWING SIEVE-SIZE DISTRIBUTION DRAWN FROM THIN-SECTION DATA OF THE CRYSTAL OF THE SIJU LIMESTONE FORMATION.
Fig. 21. (A) Mutual relationship between ϕM_2 and ϕ_1 of particles (fossils) showing submerged and beach environments.
(B) Mutual relationship between ϕM_2 and ϕ_{15}.
(C) Mutual relationship between ϕM_2 and ϕ_{15}.

[1] Siju Limestone Formation
[2] Rewak Limestone Formation
Fig. 22 A. Capillary-pressure curves of limestones of the Siyu Limestones Formation.

N_1, etc. = sample numbers.
Fig 22B. Capillary pressure curves of limestones of the Siju Limestone Formation.

M_3 etc. = Sample Numbers.
FIG. 22C. CAPILLARY PRESSURE CURVES OF LIMESTONES OF THE SIJU LIMESTONE FORMATION.

M12 ETC. = SAMPLE NUMBERS.
FIG. 22 D. CAPILLARY-PRESSURE CURVES OF LIMESTONES OF THE SIJU LIMESTONE FORMATION.

M_16, M_2, M_3, M_4, M_5, M_6, M_7, M_8 - SAMPLE NUMBERS.
FIG 22 E. CAPILLARY-PRESSURE CURVES OF LIMESTONES OF THE SISU LIMESTONE FORMATION

S115 etc. = SAMPLE NUMBERS
FIG 22 F. CAPILLARY-PRESSURE CURVES OF LIMESTONES OF THE SIJU LIMESTONE FORMATION.

Si18 etc. = SAMPLE NUMBERS.
Fig. 23. Showing the porosity and permeability as a function of the average pore diameter of the limestone from the (A) situ and (B) rewwak limestone formations.
Table: Insoluble Chemical Elements

<table>
<thead>
<tr>
<th>Soil Sample</th>
<th>Chemical Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MgO</td>
</tr>
<tr>
<td>M₁₅</td>
<td></td>
</tr>
<tr>
<td>S. St. M₁₄</td>
<td></td>
</tr>
<tr>
<td>M₁₃</td>
<td></td>
</tr>
<tr>
<td>M₁₂</td>
<td></td>
</tr>
<tr>
<td>M₁₁</td>
<td></td>
</tr>
<tr>
<td>M₁₀</td>
<td></td>
</tr>
<tr>
<td>M₉</td>
<td></td>
</tr>
<tr>
<td>M₈</td>
<td></td>
</tr>
<tr>
<td>M₇</td>
<td></td>
</tr>
<tr>
<td>M₆</td>
<td></td>
</tr>
<tr>
<td>M₅</td>
<td></td>
</tr>
<tr>
<td>M₄</td>
<td></td>
</tr>
<tr>
<td>M₃</td>
<td></td>
</tr>
</tbody>
</table>

Graph

- **Top Section**: Soil and insoluble residues.
- **Bottom Section**: Nummulitic limestone and sandstone.

- **Legend**:
 - M₃ - M₁₅ = Nummulitic Limestone
 - S. St. = Sandstone

Graph Showing Stratigraphical Distribution of Insoluble Residues and Chemical Elements of the Siju Limestone Formation

Vertical Scale
- 0'-12' = 18 Metres
- 0'-4' = 6 Feet
FIG. 2.4. GRAPH SHOWING STRATIGRAPHICAL DISTRIBUTION OF INSOLUBLE RESIDUES AND CHEMICAL ELEMENTS OF THE SIJU LIMESTONE FORMATION.
Fig. 25. Mutual relationships between insoluble residues and MgO (a), iron contents and insoluble residues (b), MgO and Fe (c), MnO and Fe (d), MgO and MnO (e), and P$_2$O$_5$ and MnO (f) of the Siju limestone formation.
Fig. 26. Frequency distribution of Ca/Mg ratios of the (A) Siju and (B) Rewak limestone formations.
<table>
<thead>
<tr>
<th>TERRESTRIAL CARBON AND PETROLEUM</th>
<th>MARINE ORGANIC CARBON</th>
<th>CARBONATE</th>
<th>CARBON</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRESENT STUDY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIJU LIMESTONE FORMATION</td>
<td></td>
<td></td>
<td>DREWITE + ALGAE</td>
</tr>
<tr>
<td>REWAQ LIMESTONE FORMATION</td>
<td></td>
<td></td>
<td>OÖLITHIB (1)</td>
</tr>
</tbody>
</table>
1. LOWENSTAM AND EPSTEIN (1956) | | | (1) |
2. JEFFREY'S et al. (1954) | | | |
3. CLAYTON AND DEGENS (1959) | | | |
4. CRAIG (1953) | | | |
5. LANDERGREN (1954) | | | |
6. SILVERMAN AND EPSTEIN (1958) | | | |

1. LAND PLANTS (4) | | | |
2. MARINE ORGANISMS (4) | | | |
3. ANcient FRESH WATER LIMESTONES | | | |
4. MARINE LIMESTONE | | | |
5. MARINE LIMESTONE | | | |
6. INTERMIXING FRESH-WATER AND MARINE LIMESTONE | | |

Fig. 27. Showing the distribution $\delta^{13}C$ in carbonates and in nature (after, Lloyd 1964, p. 105)
Fig. 28. Showing the stratigraphical distribution of insoluble residues and $\delta^{13}C$ in the (A) Siju Limestone Formation and (B_I, B_{II}) Rewak Limestone Formation.
Fig. 29. RELATIONSHIPS BETWEEN THE CARBONATE MINERAL, $\delta^{13}C$ AND $\delta^{18}O$ IN THE (A) Siju AND (B) Rewak Limestone Formations.
30. MUTUAL RELATIONSHIP BETWEEN $\delta^{13}C$ AND $\delta^{18}O$ OF THE A$_1$ AND B$_1$

AND

MUTUAL RELATIONSHIP BETWEEN SPARRY CALCITE, $\delta^{13}C$ AND $\delta^{18}O$ IN THE LIMESTONE OF THE A$_\Pi$, A$_\III$ AND B$_\Pi$, B$_\III$.

LIMESTONE FORMATION

REWAK LIMESTONE FORMATION.
SECTION III
AT 18.5 M.P.
ALONG T-D

IN/IX:
FERRUGINOUS SANDSTONE
SHALE
FOSSILIFEROUS LIMESTONE
FOSSILIFEROUS SHALE

VERTICAL SCALE
0 4 12 18 METRES
0 2 4 6 FEET

FIG 31A. GRAPHS SHOWING THE STRATIGRAPHICAL DISTRIBUTION OF INSOLUBLE RESIDUES, ALLOCHENS AND ORTHOCHENS OF THE REWAH LIMESTONE FORMATION
Figure 32A. Cumulative frequency curves showing sieve-size distribution plotted from thin-section data of the limestone of the Rewak limestone formation.
Cumulative Frequency Curves showing sieve-size distribution plotted from thin-section data of the Limestone of the Rewak Limestone Formation.
Figure 33. Cumulative frequency curves showing sieve-size distribution drawn from thin-section data of the crystal of the Rewak Limestone Formation.
Fig. 34A. Capillary pressure curves of limestones of the Pewak limestone formation.

K3 etc. = Sample Numbers
FIG. 34B. CAPILLARY-PRESSURE CURVES OF LIMESTONES OF THE RENAISSANCE LIMESTONE FORMATION.

T_6 etc. = SAMPLE NUMBERS.
Section at 18:5 P.M. Along Tura-Dalu Road

<table>
<thead>
<tr>
<th>Insoluble Residues</th>
<th>Chemical Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MgO</td>
</tr>
<tr>
<td>SOIL</td>
<td></td>
</tr>
<tr>
<td>S_{13}</td>
<td></td>
</tr>
<tr>
<td>SHALE S_{12}</td>
<td></td>
</tr>
<tr>
<td>S_{11}</td>
<td></td>
</tr>
<tr>
<td>UNFOSSILIFEROUS SHALE</td>
<td></td>
</tr>
<tr>
<td>S_{10}</td>
<td></td>
</tr>
<tr>
<td>S_{9}</td>
<td></td>
</tr>
<tr>
<td>S_{8}</td>
<td></td>
</tr>
<tr>
<td>S_{7}</td>
<td></td>
</tr>
<tr>
<td>SHALE S_{6}</td>
<td></td>
</tr>
<tr>
<td>S_{5}</td>
<td></td>
</tr>
<tr>
<td>SHALE S_{3}</td>
<td></td>
</tr>
<tr>
<td>S_{2}</td>
<td></td>
</tr>
</tbody>
</table>

Figure 35A. Graph showing stratigraphical distribution of insoluble residues and chemical elements of the Rewak Limestone Formation.
SECTION AT 13:5 P.M.
ALONG TURA-DALU ROAD

<table>
<thead>
<tr>
<th>INSOLUBLE RESIDUES</th>
<th>CHEMICAL ELEMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MgO</td>
</tr>
<tr>
<td>TOP</td>
<td></td>
</tr>
<tr>
<td>Soil</td>
<td></td>
</tr>
</tbody>
</table>
| Unfossili
erous Shale | | | | | | | | |
| K_7 | | | | | | | | |
| Unfossili
erous Shale | S.St. | | | | | | | |
| K_6 | | | | | | | | |
| Unfossili
erous Shale | | | | | | | | |
| K_5 | | | | | | | | |
| K_4 | | | | | | | | |
| K_3 | | | | | | | | |
| K_2 | | | | | | | | |
| K_2 | | | | | | | | |
| K_1 | | | | | | | | |

$K_1 - K_7 =$ FOSSILIFEROUS LIMESTONE.
$K_6 =$ SANDSTONE (S.St.)

Fig. 358. GRAPH SHOWING STRATIGRAPHICAL DISTRIBUTION OF INSOLUBLE RESIDUES AND CHEMICAL ELEMENTS OF THE REWAK LIMESTONE FORMATION.
Fig. 36. Mutual relationships between insoluble residues and
MgO (a), iron contents and insoluble residues (b), MgO
and Fe (c), MnO and Fe (d), MgO and MnO (e), and
P2O5 and MnO (f) of the Rewak Lime Stone Formation.
Fig. 37A. Cumulative curves of the sandstone of the Rewak sandstone formation.
Fig. 37. Cumulative curves of the sandstone of the Rewak Sandstone formation.
Fig. 37c. Cumulative curves of the sandstone of the Rewak Sandstone Formation.
Fig. 37D. CUMULATIVE CURVES OF THE SANDSTONE OF THE REWARE SANDSTONE FORMATION.
Fig. 38. Graph showing the relationships between ϕM_2, $\phi_{S_{1}}$, ϕS_{K_1} and ϕK_G of the Rewak Sandstone Formation.
FIG. 3. CM PATTERN OF THE REWAK SANDSTONE FORMATION