List of Figures

Figure 1.1: The different families in Character Recognition 10
Figure 1.2: Optical character recognition .. 11
Figure 1.3: The analysis of off-line and on-line character recognition 16
Figure 1.4: (a) Different types of handwritten words .. 19
(b) Different types of handwritten words (sentences) .. 19
Figure 1.5: Major stages of an CR System ... 24
Figure 1.6: Overview of conventional approach to CR 24

Figure 2.1: Chain code and graphical representations ... 54

Figure 3.1: Major stages in single (isolated) character recognition 61
Figure 3.2: Block Diagram of Optical Character Recognition System 63
Figure 3.3: Co-ordinate conventions for a digital image 65
Figure 3.4: (a) Original Input Image, (b) Image is sampled into binary windows
(cells), (c) Binary image matrix ... 66
Figure 3.5: Six sub-tasks of the Pre-processing module 68
Figure 3.6: An image, (a) with skew, (b) without skew, and its horizontal profiles 72
Figure 3.7: The slant angle estimation for the character/digit 73
Figure 3.8: (a) Original image; (b) slant corrected digits ($\theta = -25^\circ$ correction) ... 74
Figure 3.9: Bounding Box : (a) Original Image; (b) Image enclosed within a
bounding box; (c) The final image after the bounding box operation 75
Figure 3.10: Skeleton as a result of thinning: (a) Original character pattern A; (b) Various positions of maximum disks with centers on the skeleton of A, the dotted line shows the skeleton of A; (c) the thin line shows the skeleton of A.

Figure 3.11: Position of the Feature Extraction phase in the OCR system

Figure 3.12: Vector collection procedure from binary image (a) Binary Image; (b) Image mapped to sampled area; (c) Vector output after sampling the image

Figure 3.13: Line segmentation

Figure 3.14: (a) & (b) word segmentation, (c) & (d) character segmentation

Figure 3.15: Foreground feature points' extraction. (a) Original image; (b) skeleton after thinning, starting point (S) and ending point (E) are denoted by □; (c) the skeleton is traversed from left to right in two directions: clockwise and counter clockwise; (d) mapping intersection points to the foreground features on the outer contour (denoted by □)

Figure 3.16: Background skeleton extraction. (a) Preprocessed connected component image; (b) top projection profile; (c) bottom projection profile; (d) background region (white pixels outside the black object); (e) top-background skeleton; (f) bottom-background skeleton

Figure 3.17: Background feature points' extraction. (a) Original top/bottom-background skeletons; (b) after removing the parts crossing the middle line, the end points are background features

Figure 3.18: Flowchart of downward/upward search for constructing segmentation paths

Figure 3.19: Feature points on the background and foreground (from the top and bottom) are matched, and connected to construct segmentation paths

Figure 3.20: Recognition based segmentation: Segmentation is coupled to the recognition unit

Figure 3.21: The Design of an OCR System (isolated character) using Neural Network
Figure 3.22: Overview of word/string recognition methods

Figure 3.23: (a) A word image, (b) its segmentation sequences, and (c) string classes

Figure 3.24: Post processing is done with the help of Dictionary

Figure 4.1: The Hierarchical development of Assamese Language

Figure 4.2: Samples of Kāmarūpī script
 (a) Umacal Rock Inscription (5th century A.D.)
 (b) Nidhanpur Copper-plate Inscription of Bhaskaravarman (7th century A.D.)

Figure 4.3: A sample of Gadgañā script
 (Ms. Burāñji (LGP, Jor-2) Folio 22-A; 1785 A.D.)

Figure 4.4: A sample of Bāmuniyā script
 (Ms. Bhakti Ratnāvali (DUAD, 176) Folio 8-B; 1735 A.D.)

Figure 4.5: A sample of Kāitheli script
 (Ms. Nāmghoṣā (DUAD, 35) Folio 30-A)

Figure 4.6: Illustration of a sample character set from old Assamese script

Figure 4.7: (a) Assamese Vowels; (b) Assamese Consonants;
 (c) Assamese Numeral digits

Figure 4.8: (a) Assamese Vowel Modifiers attached to the first consonant ‘ἇ’ (Ka)
 (b) Some examples of Compound characters

Figure 4.9: Baseline identification and the Justifications used in Assamese &
 English Writing

Figure 4.10: (a) Line segmentation using horizontal projection profile;
 (b) Baseline Identification

Figure 4.11: (a) Three zones of Assamese characters;
 (b) Three Zones in an Assamese text line

Figure 4.12: (a) Linear vertical scan for character detection,
 (b) Linear vertical scan fails to detect character
Figure 4.13: Use characteristic functions for finding (a) upper portion of a character and (b) lower portion of a character 135

Figure 4.14: (a) Horizontal composite character; (b) Segmentation of the constituent characters ... 139

Figure 4.15: (a) Vertical composite character; (b) Segmentation of the constituent characters ... 140

Figure 5.1: Components of a biological (or human) Neuron 143

Figure 5.2: The Neuron model: Association of Biological Net with Artificial Net 144

Figure 5.3: A simple Neuron .. 145

Figure 5.4: Model of a neuron .. 149

Figure 5.5: Block Diagram of Supervised Learning .. 153

Figure 5.6: Illustration of binary Sigmoidal Transfer function 155

Figure 5.7: The structure of the Backpropagation (BP) Algorithm 157

Figure 5.8: Illustration of the directions of two basic signal flows in a multilayer feedforward backpropagation network: forward propagation of functional signals and back-propagation of error signals 159

Figure 5.9: Architecture of Backpropagation Network .. 160

Figure 5.10: Illustration of pattern association task ... 166

Figure 5.11: An example of pattern association problem 167

Figure 5.12: Illustration of pattern classification task ... 168

Figure 5.13: An example of pattern classification problem 169

Figure 6.1: (a) Old Assamese Manuscript contaminated with background Noise; (b) Line Segmentation of Filtered Assamese Manuscript Text/Document 171

xxvi
Figure 6.2: (a) Segmentation of Assamese Text into Constituent Strings (lines);
 (b) Segmentation of Assamese String (a line of text) into Constituent Words;
 (c) Segmentation of Assamese Word into Constituent Characters;
 (d) Isolated Assamese Character after Segmentation Process

Figure 6.3: Converting RGB to binary image and necessary histograms

Figure 6.4: Vector collection from the binary image of Character ‘Ka’

Figure 6.5: (a) Original Image has Black foreground on White background;
 (b) Image converted to White foreground on Black background

Figure 6.6: (a) Original Image; (b) Image enclosed within a bounding box

Figure 6.7: (a) Original Image; (b) Image normalized (scaled/resized)

Figure 6.8: (a) Original Image; (b) Image Thinned (skeletonized)

Figure 6.9: (a) Original Image; (b) Image having ‘salt & pepper’ noise;
 (c) Image filtered with Averaging filter;
 (d) Image filtered with Median filter

Figure 6.10: Forming words, character and components

Figure 6.11: Ba (ন) – Na (ন) Data Representation

Figure 6.12: Hebb net for Ba (ন) – Na (ন) problem

Figure 6.13: (a) The Output Resultant matrix is displayed by a Matlab Program
 (b) The same resultant weight matrix with transposed form is displayed

Figure 6.14: The two input patterns and four test patterns
 for ‘ন’ (Ba) and ‘ন’ (Na)

Figure 6.15: The report generated for the four tested patterns

Figure 6.16: Interpretation of the result of the Recognition

Figure 6.17: Target vectors (7x5) for ten Input digits

Figure 6.18: Target vectors (9x7) for ten Input digits

Figure 6.19: Ten Assamese numeric digits with a resolution of 5 x 7
Figure 6.20: (a) A “perfect” image of the digit “2”, and
(b) 4 noisy versions of it (at standard deviation of 0.2) --------------

Figure 6.21: A “perfect” picture of the Assamese digit 2
(in two difference versions)--

Figure 6.22: Picture shows a “noisy” version of the Assamese digit 2
(in two difference versions)--

Figure 6.23: A two-layer log-sigmoid / log-sigmoid network.
(using abbreviated notation)--

Figure 6.24: A two-layer log-sigmoid / log-sigmoid network.
(using conventional neuron model)-----------------------------------

Figure 6.25: Two graphs showing the reliability of two networks with the
percentage of recognition errors-------------------------------------

Figure 6.26: The network is tested with a noisy version of the
Assamese digit ‘2’.---

Figure 6.27: Illustrates the correct recognition of five noisy patterns of
the digit ‘2’.---

Figure 6.28: A few noisy input vectors (7x 5) recognized from the
Target vectors as Output--

Figure A.1: McCulloch-Pitts Neuron Model-----------------------------

Figure A.2: A simple Hebb Network-----------------------------------

Figure A.3: Original Perceptron-------------------------------------

Figure A.4: Mark 1 Perceptron--------------------------------------

Figure A.5: A simple (single layer) Perceptron----------------------