CHAPTER - I
INTRODUCTION
CHAPTER - I

INTRODUCTION

Knowledge of insect fauna is useful for planning agricultural and forestry development programmes and insect survey provides information about the insects, the places where they occur, their population, the manner and the rate how they increase and the nature and extent of damage they cause to agricultural crops and forests. The information collected in such a survey also helps to know the insects of economic importance in relation to forestry and leads to the investigation and control of insect pests that take a heavy toll of forest crops (Khan, 1970). Insects form an important part of the life communities of a forest of which some are serious pests, while others just take a few bites here and there.

The forests of Kamrup district are enriched with tropical and subtropical deciduous and evergreen plants about 178 species of trees, 87 species of herbs and shrubs and 40 species of climbers are the common view in the forests of Kamrup district (Das, 1973). The flourishing of these plants are highly supported by the suitable climatic conditions. The heaviest rainfall, high temperature and wetness are responsible for the dense tropical forests in Assam (Sharma, 1991).

The phytoresources of the forests of Kamrup district earns a good revenue annually and the main sources are the wood yielding plants. About 56 species of wood yielding plants are still available in the forests of Kamrup district. The commercial exploitation and subsequent higher demand has enhanced the importance of wood yielding trees. Some of the forests are still abundant in indigenous and exotic wood yielding trees, while others with scanty plant population.

Insects are one of the limiting factor in either preventing high yield or high quality (Painter, 1951) of the plants. The behaviour of the insects changes with the floristic and geographic condition. A non pest species of one region may be destructive to the plants of another geographic region (Coulson and Witter, 1984). Some herbivore insects feed on a few host plant species locally, but throughout their geographic range destroy much more (Hsiao, 1978). Others restricted feeding by habitat, plant growth form or composition of these factors (Futuyma, 1976; Morrow, 1977; Futuyma and Gould, 1979; Fenny, 1970; Opler, 1978 and Coulson and Witter, Opp.Cit.).
The attack of many leaf feeder insects defoliates the forest crops and the attack of various borer insect species even causes death of numbers of commercially important wood yielding forest trees (Mathew, 1987 and Thapa and Singh, 1986). Most often it is a common sight to see vast areas with skeletonized plants or with dead standing trees and thus bringing a heavy economic damage annually. Pest incidence may occur in natural forest for some tree species, though not all, but the damage may be less severe or less conspicuous because the trees are dispersed (Nair et al., 1986). Forest plantations of most tree species often suffer heavy damage due to insect pests while pest outbreaks seldom take a serious turn in natural forests (Mathew and Mohandas, 1989).

There is little data on pest incidence in natural forests of tropical region which usually consist of a mixture of several tree species Nair et al. (Opp.Cit.) Numerous injurious insects are associated with forest trees in the Indian region (Beeson, 1941 and UNESCO, 1978) and most have been recorded from natural forests, in general, nothing is known of their pest status Nair et al. (Opp.Cit.). On the other hand, attack of some borer insects causing tree mortality either directly or through associated micro-organisms (Beeson, Opp. Cit.; Ghosh et al., 1991; Sharma et al., Opp.Cit. and Nair et al., Opp.Cit.).

Extensive surveys for detection for possible beginnings is prime requisite (Grahum and Knight, 1965). Through survey it is frequently desired to measure the species make-up and change in its population density (Southwood, 1978). Workers from various regions are quite familiar with the spatial survey of the insect species (Mathew, Opp.Cit.; Singh and Bhandary, 1987; Chaudry et al, 1970; Liu, 1990; Simionescu and Teodorescu, 1990; Hinsch, 1991; Schultliness et al, 1991; Tenow and Helena, 1989; Ohmart et al, 1984; Okiwelu et al, 1988; Goh et al, 1988 and Swain and Prinslodd, 1987) and hence it is desirable to survey the insect fauna composition of the specific forest areas.

Insects attack the roots, stems, branches, young twigs, buds, leaves, inflorescence, fruits, seeds and timbers and thereby affects the growth of the tree or different part of the tree (Stebbing, 1914 and Moni, 1971). The repeated leaf damage or complete defoliation by the phytophagous insects retards the growth of the host plant (Lessard and Buffan, 1978; Ceber, 1977; Verma, 1986 and SudheendraKumar, 1986) reduces the volume which is of high economic significance (Nair et al, 1985). Severe defoliation initiates fewer leaves in the next sprouting or may change the normal phenology and foliage quality of the host plant (Haukioja, 1991).
The defoliation injures trees by reducing photosynthesis and rate of growth. The complete or repeated complete defoliation stops bud formation, top growth and wood formation. Trees that have reduced vitality by defoliation are much more susceptible to the attack of bark beetles or borers and kills the plants that might have survived (Graham and Knight, Opp.Cit.). The severe borer attack causes the death of the standing crops but even less boring may facilitated the easy invasion of other new insects or may emphasize the harbour of bacterial, viral and fungal diseases (Sharma, Opp.Cit.). The borer infestation frequently runs from standing crops to the timber depots or vice-versa and needs effective prophylactic treatments (Mathew, Opp. Cit.). The phytophagous insect species may alter their host according to the availability of the host plants and food scarcity (Baruah, 1988) and migration often brings epidemic infestation (Nair and Sudheendrakumar, 1986).

It is essential to know the detailed life history of the insects because of the facts that immature stages of the insects varies morphologically with the adults or may vary with the habit and habitat. Further, immature stages of the insects are more destructive to the host plant. The biologists are quite familiar with the study of insect biology (Freitas, 1991; Massodi, 1991; Marin, 1988; Anioko, 1989; Ruehm, 1987; Patil and Thontadarya, 1987; Inoue, 1991; Kelley and Curry, 1991; Vergara et al, 1989; Tahhan and Emden, 1989; Chaudry and Gul, 1981; Roy and Pandey, 1991; Goldson, 1984 and Hawkeswood and Jolivet, 1988). Life cycle can be conveniently partitioned according to the developmental stages of the insects (i.e. adult, egg, larva and pupa) and generation time (Coulson and Witter, Opp.Cit.).

The life cycle can be defined as a time period which begins with fertilization and ends with the death of the adult insect. But for practical purposes life cycle means the period elapsing between the points of time at which the egg is laid (or the larva is born viviparously) and the resulting imago emerges freely and actively (Beeson, Opp.Cit.). The duration of an insects life cycle vary considerably for each species and each individual of a species (Beeson, Opp.Cit.) or among the different developmental stages of species. The duration of the developmental stages varies with the seasonal changes (Marin Opp.Cit. and Roy -and Pande, Opp.Cit. and Chaudhry and Alikhan,1990). Further, the leaf maturity stage exerts a pressure on the development of the insects (Baruah et al, 1993).
The term generation is used to describe all the individuals of a species in a particular locality that are the offspring of an immediately previous generation and the generation starts when the egg is deposited or when a larva is born viviparously (Beeson, Opp.Cit.). All the individuals of a species hatching from eggs or produced viviparously after the beginning of the years constitute of the first generation of the year. The hibernating individuals are the ongoing of the last generation where as the hibernating eggs as forming part of the first generation of the new year but in such cases it is the instar which hatches that marks the true beginning of the generation (Beeson, Opp.Cit.).

The differences in the durations of the developmental stages produces overlapping generations in the case of the multivoltine insects. The overlapping generations are the most destructive to the host plants. However, in the case of the univoltine insects overlapping of the individual stages take place rather than the formation of overlapping generations.