LIST OF FIGURES

Fig. 1 Chromatogram of GLC analysis of oil sample from *Cymbopogon flexuosus* plant grown on soil ammended with 200 mg kg\(^{-1}\) lead nitrate (Hydrodistilled in winter).

Fig. 2 Chromatogram of GLC analysis of oil sample from *Cymbopogon flexuosus* plant grown on soil ammended with 300 mg kg\(^{-1}\) lead nitrate (Hydrodistilled in summer).

Fig. 3 Chromatogram of GLC analysis of oil sample from *Cymbopogon flexuosus* plant grown on soil ammended with 500 mg kg\(^{-1}\) lead nitrate (Hydrodistilled in summer).

Fig. 4 Chromatogram of GLC analysis of oil sample from *Cymbopogon flexuosus* plant grown on unammmended soil (Hydrodistilled in summer).

Fig. 5 Chromatogram of GLC analysis of oil sample from *Cymbopogon flexuosus* plant grown on unammmended soil (Hydrodistilled in winter).

Fig. 6 Chromatogram of GLC analysis of oil samples from *Cymbopogon flexuosus* plant grown on soil ammended with 50 mg kg\(^{-1}\) mercuric nitrate (Hydrodistilled in summer).

Fig. 7 Chromatogram of GLC analysis of oil samples from *Cymbopogon flexuosus* plant grown on soil ammended with 500 mg kg\(^{-1}\) mercuric nitrate (Hydrodistilled in winter).

Fig. 8 Chromatogram of GLC analysis of oil samples from *Cymbopogon flexuosus* plant grown on soil ammended with 500 mg kg\(^{-1}\) mercuric nitrate (Hydrodistilled in summer).

Fig. 9 Chromatogram of GLC analysis of oil samples from *Cymbopogon flexuosus* plant grown on soil ammended with 100 mg kg\(^{-1}\) cadmium nitrate (Hydrodistilled in summer).

Fig. 10 Chromatogram of GLC analysis of oil samples from *Cymbopogon flexuosus* plant grown on soil ammended with 100 mg kg\(^{-1}\) cadmium nitrate (Hydrodistilled in winter).

Fig. 11 Relationship between seasonal changes (Temperature) and impact of lead on growth index over four seasons.

Fig. 12 Relationship between seasonal changes (Rainfall) and impact of lead on growth index over four seasons.
Fig. 13 Relationship between seasonal changes (Relative humidity) and impact of lead on growth index over four seasons.

Fig. 14 Relationship between seasonal changes (Temperature) and impact of lead on oil content over four seasons.

Fig. 15 Relationship between seasonal changes (Rainfall) and impact of lead on oil content over four seasons.

Fig. 16 Relationship between seasonal changes (Relative Humidity) and impact of lead on oil content over four seasons.

Fig. 17 Relationship between seasonal changes (Temperature) and impact of mercury on growth index over four seasons.

Fig. 18 Relationship between seasonal changes (Rainfall) and impact of mercury on growth index over four seasons.

Fig. 19 Relationship between seasonal changes (Relative Humidity) and impact of mercury on growth index over four seasons.

Fig. 20 Relationship between seasonal changes (Temperature) and impact of mercury on oil content over four seasons.

Fig. 21 Relationship between seasonal changes (Rainfall) and impact of mercury on oil content over four seasons.

Fig. 22 Relationship between seasonal changes (Relative Humidity) and impact of mercury on oil content over four seasons.

Fig. 23 Relationship between seasonal changes (Temperature) and impact of cadmium on growth index over four seasons.

Fig. 24 Relationship between seasonal changes (Rainfall) and impact of cadmium on growth index over four seasons.

Fig. 25 Relationship between seasonal changes (Relative Humidity) and impact of cadmium on growth index over four seasons.

Fig. 26 Relationship between seasonal changes (Temperature) and impact of cadmium on oil content over four seasons.

Fig. 27 Relationship between seasonal changes (Rainfall) and impact of cadmium on oil content over four seasons.
Fig. 28 Relationship between seasonal changes (Relative Humidity and impact of cadmium on growth index over four seasons.

Fig. 29 Absorbance spectrum for proline accumulation without treatment (New leaf, Short term exposure)

Fig. 30 Absorbance spectrum for proline accumulation without treatment (Old leaf, Short term exposure).

Fig. 31 Absorbance spectrum for proline accumulation without treatment (Old leaf, Long term exposure).

Fig. 32 Absorbance spectrum for proline accumulation without treatment (New leaf, Long term exposure)

Fig. 33 Absorbance spectrum for proline accumulation following 200 mg kg$^{-1}$ lead nitrate (New leaf, Short term exposure).

Fig. 34 Absorbance spectrum for proline accumulation following 200 mg kg$^{-1}$ lead nitrate (New leaf, Long term exposure).

Fig. 35 Absorbance spectrum for proline accumulation following 500 mg kg$^{-1}$ lead nitrate (New leaf, Short term exposure).

Fig. 36 Absorbance spectrum for proline accumulation following 500 mg kg$^{-1}$ lead nitrate (New leaf, Long term exposure).

Fig. 37 Absorbance spectrum for proline accumulation following 200 mg kg$^{-1}$ mercuric nitrate (New leaf, Short term exposure).

Fig. 38 Absorbance spectrum for proline accumulation following 200 mg kg$^{-1}$ mercuric nitrate (New leaf, Long term exposure).

Fig. 39 Absorbance spectrum for proline accumulation following 500 mg kg$^{-1}$ mercuric nitrate (New leaf, Short term exposure).

Fig. 40 Absorbance spectrum for proline accumulation following 500 mg kg$^{-1}$ mercuric nitrate (New leaf, Long term exposure).

Fig. 41 Absorbance spectrum for proline accumulation following 200 mg kg$^{-1}$ cadmium nitrate (New leaf, Short term exposure).

Fig. 42 Absorbance spectrum for proline accumulation following 200 mg kg$^{-1}$ cadmium nitrate (New leaf, Long term exposure).
Fig. 43 Absorbance spectrum for proline accumulation without treatment (Root).

Fig. 44 Absorbance spectrum for proline accumulation following 50 mg kg\(^{-1}\) lead nitrate (Root).

Fig. 45 Absorbance spectrum for proline accumulation following 200 mg kg\(^{-1}\) lead nitrate (Root).

Fig. 46 Absorbance spectrum for proline accumulation following 500 mg kg\(^{-1}\) lead nitrate (Root).

Fig. 47 Absorbance spectrum for proline accumulation following 50 mg kg\(^{-1}\) mercuric nitrate (Root).

Fig. 48 Absorbance spectrum for proline accumulation following 200 mg kg\(^{-1}\) mercuric nitrate (Root).

Fig. 49 Absorbance spectrum for proline accumulation following 500 mg kg\(^{-1}\) mercuric nitrate (Root).

Fig. 50 Absorbance spectrum for proline accumulation following 200 mg kg\(^{-1}\) cadmium nitrate (Root).

Fig. 51 Absorbance spectrum for proline accumulation following 100 mg kg\(^{-1}\) cadmium nitrate (Root).

Fig. 52 Absorbance spectrum for NR activity without treatment (New leaf, Short term exposure).

Fig. 53 Absorbance spectrum for NR activity without treatment (Old leaf, Short term exposure).

Fig. 54 Absorbance spectrum for NR activity due to 500 mg kg\(^{-1}\) lead nitrate (New leaf, Short term exposure).

Fig. 55 Absorbance spectrum for NR activity due to 50 mg kg\(^{-1}\) lead nitrate (Old leaf, Short term exposure).

Fig. 56 Absorbance spectrum for NR activity due to 500 mg kg\(^{-1}\) mercuric nitrate (New leaf, Short term exposure).

Fig. 57 Absorbance spectrum for NR activity due to 50 mg kg\(^{-1}\) mercuric nitrate (Old leaf, Short term exposure).

Fig. 58 Absorbance spectrum for NR activity due to 200 mg kg\(^{-1}\) cadmium nitrate (New leaf, Short term exposure).
Fig. 59 Absorbance spectrum for NR activity due to 50 mg kg\(^{-1}\) cadmium nitrate (Old leaf, Short term exposure).

Fig. 60 Absorbance spectrum for NR activity without treatment (Old leaf, Long term exposure).

Fig. 61 Absorbance spectrum for NR activity without treatment (New leaf, Long term exposure).

Fig. 62 Absorbance spectrum for NR activity due to 50 mg kg\(^{-1}\) lead nitrate (Old leaf, Long term exposure).

Fig. 63 Absorbance spectrum for NR activity due to 500 mg kg\(^{-1}\) lead nitrate (New leaf, Long term exposure).

Fig. 64 Absorbance spectrum for NR activity due to 50 mg kg\(^{-1}\) mercuric nitrate (Old leaf, Long term exposure).

Fig. 65 Absorbance spectrum for NR activity due to 500 mg kg\(^{-1}\) mercuric nitrate (New leaf, Long term exposure).

Fig. 66 Absorbance spectrum for NR activity due to 50 mg kg\(^{-1}\) cadmium nitrate (Old leaf, Long term exposure).

Fig. 67 Absorbance spectrum for NR activity due to 200 mg kg\(^{-1}\) cadmium nitrate (New leaf, Long term exposure).

Fig. 68 Absorbance spectrum for NR activity without treatment (Root).

Fig. 69 Absorbance spectrum for NR activity due to 50 mg kg\(^{-1}\) lead nitrate (Root).

Fig. 70 Absorbance spectrum for NR activity due to 500 mg kg\(^{-1}\) lead nitrate (Root).

Fig. 71 Absorbance spectrum for NR activity due to 50 mg kg\(^{-1}\) mercuric nitrate (Root).

Fig. 72 Absorbance spectrum for NR activity due to 500 mg kg\(^{-1}\) mercuric nitrate (Root).

Fig. 73 Absorbance spectrum for NR activity due to 50 mg kg\(^{-1}\) cadmium nitrate (Root).

Fig. 74 Relative distribution frequency of lead (50 mg kg\(^{-1}\)).

Fig. 75 Relative distribution frequency of lead (100 mg kg\(^{-1}\)).
Fig. 76 Relative distribution frequency of lead (200 mg kg\(^{-1}\)).
Fig. 77 Relative distribution frequency of lead (350 mg kg\(^{-1}\)).
Fig. 78 Relative distribution frequency of lead (500 mg kg\(^{-1}\)).
Fig. 79 Relative distribution frequency of mercury (50 mg kg\(^{-1}\)).
Fig. 80 Relative distribution frequency of mercury (100 mg kg\(^{-1}\)).
Fig. 81 Relative distribution frequency of mercury (200 mg kg\(^{-1}\)).
Fig. 82 Relative distribution frequency of mercury (350 mg kg\(^{-1}\)).
Fig. 83 Relative distribution frequency of mercury (500 mg kg\(^{-1}\)).
Fig. 84 Relative distribution frequency of cadmium (50 mg kg\(^{-1}\)).
Fig. 85 Relative distribution frequency of cadmium (100 mg kg\(^{-1}\)).
Fig. 86 Relative distribution frequency of cadmium (200 mg kg\(^{-1}\)).