CONTENTS

LIST OF TABLES I - V
LIST OF PHOTOGRAPHS VI

CHAPTER 1 INTRODUCTION

1.1 Distribution 2
1.2 General description 2
1.3 Plant growth regulators on germination, growth and yield 5

CHAPTER 2 REVIEW OF LITERATURE 8 - 36

2.1 Gibberellins 8
2.1.1 Role of Gibberellins on germination 9
2.1.2 Role of Gibberellins on shoot growth 13
2.1.3 GA and leaf growth 17
2.1.4 Other effects of Gibberelic acid 19

2.2 Growth retardants 21
2.2.1 (2-Chloroethyl)trimethyl ammonium chloride (CCC) 23
2.2.1.1 CCC on germination 23
2.2.1.2 CCC on seedling growth 24
2.2.1.3 Other effects of CCC 26
2.2.2 Succinic acid 2,2-dimethyl hydrazide (Alar) 31
2.2.2.1 Alar on germination 31
2.2.2.2 Alar on seedling growth 32
2.2.2.3 Other effects of Alar 32

2.3 Interactions between GA, and growth retardants 35

CHAPTER 3 MATERIALS AND METHODS 37 - 45

3.1 Plant materials 37
3.2 Preparation of land 37
3.3 Soil analysis 38
3.4 Experimental design 38
3.5 Irrigation 40
CHAPTER 4 EXPERIMENTAL FINDINGS

4.1 Effect of Gibberellic acid (GA₃) on the germination of seeds, seedling growth, chlorophyll content and yield of groundnut (CV JR 24)

4.2 Effect of Gibberellic acid (GA₃) on the germination of seeds, seedling growth, chlorophyll content and yield of groundnut (CV LJ 24)

4.3 Effect of (2-Chloroethyl) trimethyl ammonium chloride (CCC) on the germination of seeds, seedling growth, chlorophyll content and yield of groundnut (CV JR 24)

4.4 Effect of (2-Chloroethyl) trimethyl ammonium chloride (CCC) on the germination of seeds, seedling growth, chlorophyll content and yield of groundnut (CV LJ 24)

4.5 Effect of Succinic acid 2,2-dimethyl hydrazide (Alar) on the germination of seeds, seedling growth, chlorophyll content and yield of groundnut (CV JR 24)
4.6 Effect of Succinic acid 2,2-dimethyl hydrazide (Alar) on the germination of seeds, seedling growth, chlorophyll content and yield of groundnut (CV JL 24)

4.7 Interactions between growth promoters and retardants on seedling growth, metabolism and yield of groundnut (CV JL 24)

4.7.1 Interactions between GA₃ and CCC on seedling growth, metabolism and yield of groundnut

4.7.1.1 Length of shoots
4.7.1.2 Number of branches
4.7.1.3 Number of leaves
4.7.1.4 Chlorophyll content
4.7.1.5 Protein content
4.7.1.6 Fat content
4.7.1.7 Sugar content
4.7.1.8 Yield

4.7.2 Interactions between GA₃ and Alar on seedling growth, metabolism and yield

4.7.2.1 Length of shoots
4.7.2.2 Number of branches
4.7.2.3 Number of leaves
4.7.2.4 Chlorophyll content
4.7.2.5 Protein content
4.7.2.6 Fat content
4.7.2.7 Sugar content
4.7.2.8 Yield

CHAPTER 5 GENERAL DISCUSSION

5.1 Germination

5.1.1 Gibberellic acid (GA)
5.1.2 (2-Chloroethyl) trimethyl ammonium chloride (CCC)
5.1.3 Succinic acid 2,2-dimethyl hydrazide (Alar)
5.2 Seedling growth

5.2.1 Gibberellic acid (GA$_3$) 133
5.2.2 (2-Chloroethyl)trimethyl ammonium chloride (CCC) 136
5.2.3 Succinic acid 2,2-dimethyl hydrazide (Alar) 138

5.3 Chlorophyll content

5.3.1 Gibberellic acid (GA$_3$) 139
5.3.2 (2-Chloroethyl) trimethyl ammonium chloride (CCC) 140
5.3.3 Succinic acid 2,2-dimethyl hydrazide (Alar) 141

5.4 Yield

5.4.1 Gibberellic acid (GA$_3$) 141
5.4.2 (2-Chloroethyl) trimethyl ammonium chloride (CCC) 143
5.4.3 Succinic acid 2,2-dimethyl hydrazide (Alar) 144

5.5 Interactions between GA$_3$ and CCC 144
5.6 Interactions between GA$_3$ and Alar 146

CHAPTER 6 SUMMARY AND CONCLUSION 150 - 155

6.1 Germination of seeds 150
6.2 Seedling growth 151

6.2.1 Length of shoots 151
6.2.2 Number of leaves 151
6.2.3 Number of branches 151

6.3 Interactions between GA$_3$ and growth retardants on seedling growth 152

6.4 Chlorophyll contents of leaves 153
6.5 Fat content of groundnut seeds 153
6.6 Protein content of groundnut seeds 153
6.7 Sugar content of groundnut seeds 153
6.8 Yield 154

BIBLIOGRAPHY 156 - 193

APPENDIX TABLES 194 - 201