List of Figures

Fig. 1 Effect of various concentrations of polyvinyl alcohol (PVA) on the size of poly (lactide - co-glycolide) (PLGA) and poly (lactide) (PLA) microspheres when glutaraldehyde was used as cross linker

Fig. 2 Effect of various concentrations of polyvinyl alcohol (PVA) on the size of poly (lactide - co-glycolide) (PLGA) and poly (lactide) (PLA) microspheres using dextran as cross linker

Fig. 3 Effect of various continuous phase on the formation of chitosan microspheres of different viscosity grades using glutaraldehyde as cross linker

Fig. 4 Effect of various continuous phase on the formation of chitosan microspheres of different viscosity grades using dextran as cross linker

Fig. 5 Effect of various concentrations of two different crosslinking agents on the size of the microspheres formed using 1% w/v of PLGA polymer before and after sonification

Fig. 6 Effect of various concentrations of two different crosslinking agents on the size of the microspheres formed using 2% w/v of PLGA polymer before and after sonification

Fig. 7 Effect of various concentrations of two different crosslinking agents on the size of the microspheres formed using 3% w/v of PLGA polymer before and after sonification

Fig. 8 Effect of various concentrations of two different crosslinking agents on the size of the microspheres formed using 1% w/v of PLA polymer before and after sonification

Fig. 9 Effect of various concentrations of two different crosslinking agents on the size of the microspheres formed using 2% w/v of PLA polymer before and after sonification

Fig. 10 Effect of various concentrations of two different crosslinking agents on the size of the microspheres formed using 3% w/v of PLA polymer before and after sonification

Fig. 11 Effect of various concentrations of two different crosslinking agents on the size of the microspheres formed using 1% w/v of chitosan polymer (50 cps grade) before and after sonification

Fig. 12 Effect of various concentrations of two different crosslinking agents on the size of the microspheres formed using 2% w/v of chitosan polymer (50 cps grade) before and after sonification

Fig. 13 Effect of various concentrations of two different crosslinking agents on the size of the microspheres formed using 3% w/v of chitosan polymer (50 cps grade) before and after sonification

Fig. 14 Effect of various concentrations of two different crosslinking agents on the size of the microspheres formed using 1% w/v of chitosan polymer (150 cps grade) before and after sonification

Fig. 15 Effect of various concentrations of two different crosslinking agents on the size of the microspheres formed using 2% w/v of chitosan polymer (150 cps grade) before and after sonification

Fig. 16 Effect of various concentrations of two different crosslinking agents on the size of the microspheres formed using 3% w/v of chitosan polymer (150 cps grade) before and after sonification

Fig. 17 Effect of various concentrations of two different crosslinking agents on the size of the microspheres formed using 1% w/v of chitosan polymer (300 cps grade) before and after sonification

Fig. 18 Effect of various concentrations of two different crosslinking agents on the size of the microspheres formed using 2% w/v of chitosan polymer (300 cps grade) before and after sonification

Fig. 19 Effect of various concentrations of two different crosslinking agents on the size of the microspheres formed using 3% w/v of chitosan polymer (300 cps grade) before and after sonification

Fig. 20 Effect of various concentrations of glutaraldehyde on the size of microspheres formed using 1%, 2%, 3% w/v of albumin polymer before and after sonification

Fig. 21 Effect of various concentrations of glutaraldehyde on the size of microspheres formed using 1%, 2%, 3% w/v of dextran polymer before and after sonification

Fig. 22 Effect of various concentrations of glutaraldehyde on the size of microspheres formed using 1%, 2%, 3% w/v of dextran polymer before and after sonification
Fig. 23 Particle size distribution of hepatitis B vaccine encapsulated various polymeric microspheres before (bs) and after sonification (as)

Fig. 24 Encapsulation efficiency of hepatitis B vaccine in to PLGA / PLA and Chitosan microspheres determined by various methods

Fig. 25 The effect of PLGA polymer with various concentrations of glutaraldehyde on vaccine loading

Fig. 26 The effect of PLGA polymer with various concentrations of dextran on vaccine loading

Fig. 27 The effect of PLA polymer with various concentrations of glutaraldehyde on vaccine loading

Fig. 28 The effect of PLA polymer with various concentrations of dextran on vaccine loading

Fig. 29 The effect of chitosan 150 cps polymer grade with various concentrations of glutaraldehyde on vaccine loading

Fig. 30 The effect of chitosan 150 cps polymer grade with various concentrations of dextran on vaccine loading

Fig. 31 The effect of chitosan 50 cps polymer grade with various concentrations of glutaraldehyde on vaccine loading

Fig. 32 The effect of chitosan 50 cps polymer grade with various concentrations of dextran on vaccine loading

Fig. 33 The effect of chitosan 300 cps polymer grade with various concentration of glutaraldehyde on vaccine loading

Fig. 34 The effect of chitosan 300 cps polymer grade with various concentration of dextran on vaccine loading

Fig. 35 A comparative study on loading capacity of hepatitis B vaccine in PLGA / PLA/ Chitosan microspheres after encapsulation

Fig. 36 FTIR spectrum of hepatitis B vaccine

Fig. 37 FTIR spectrum of PLGA polymer

Fig. 38 FTIR spectrum of glutaraldehyde cross linked PLGA microspheres (with out vaccine)

Fig. 39 FTIR spectrum of dextran cross linked PLGA microspheres (with out vaccine)

Fig. 40 FTIR spectrum of hepatitis B vaccine encapsulated, glutaraldehyde cross linked PLGA microspheres

Fig. 41 FTIR spectrum of hepatitis B vaccine encapsulated, dextran cross linked PLGA microspheres

Fig. 42 FTIR spectrum of PLA polymer

Fig. 43 FTIR spectrum of glutaraldehyde cross linked PLA microspheres (with out vaccine)

Fig. 44 FTIR spectrum of dextran cross linked PLA microspheres (with out vaccine)

Fig. 45 FTIR spectrum of hepatitis B vaccine encapsulated, glutaraldehyde cross linked PLA microspheres

Fig. 46 FTIR spectrum of hepatitis B vaccine encapsulated, dextran cross linked PLA microspheres

Fig. 47 FTIR spectrum of chitosan polymer (150 cps grade)

Fig. 48 FTIR spectrum of glutaraldehyde cross linked chitosan microspheres (with out vaccine)

Fig. 49 FTIR spectrum of dextran cross linked chitosan microspheres (with out vaccine)

Fig. 50 FTIR spectrum of hepatitis B vaccine encapsulated, glutaraldehyde cross linked chitosan microspheres

Fig. 51 FTIR spectrum of hepatitis B vaccine encapsulated, dextran cross linked chitosan microspheres

Fig. 52 FTIR spectrum of albumin polymer

Fig. 53 FTIR spectrum of glutaraldehyde cross linked albumin microspheres (with out vaccine)
Fig. 54 FT IR spectrum of hepatitis B vaccine encapsulated, glutaraldehyde cross linked albumin microspheres

Fig. 55 FT IR spectrum of dextran polymer

Fig. 56 FT IR spectrum of glutaraldehyde cross linked, dextran microspheres (with out vaccine)

Fig. 57 FT IR spectrum of hepatitis B vaccine encapsulated, glutaraldehyde cross linked dextran microspheres

Fig. 58 Water uptake of various polymeric microspheres and the size of the microspheres after 24hrs incubation in PBS of pH 7.4

Fig. 59 Effect of various concentrations of glutaraldehyde on in vitro release pattern of hepatitis B vaccine from PLGA microspheres

Fig. 60 Linear regression of in vitro release pattern of hepatitis B vaccine from PLGA microspheres prepared by 2% w/v of PLGA polymer cross linked with 1.5% v/v of glutaraldehyde

Fig. 61 Linear regression of in vitro release pattern of hepatitis B vaccine from PLGA microspheres prepared by 2% w/v of PLGA polymer cross linked with 2% v/v of glutaraldehyde

Fig. 62 Linear regression of in vitro release pattern of hepatitis B vaccine from PLGA microspheres prepared by 2% w/v of PLGA polymer cross linked with 2.5% v/v of glutaraldehyde

Fig. 63 Linear regression of in vitro release pattern of hepatitis B vaccine from PLGA microspheres prepared by 2% w/v of PLGA polymer cross linked with 3% v/v of glutaraldehyde

Fig. 64 Effect of various concentrations of dextran on in vitro release pattern of hepatitis B vaccine from 2% w/v of PLGA microspheres

Fig. 65 Linear regression of in vitro release pattern of hepatitis B vaccine from PLGA microspheres prepared by 2% w/v of PLGA polymer cross linked with 1.5% w/v of dextran

Fig. 66 Linear regression of in vitro release pattern of hepatitis B vaccine from PLGA microspheres prepared by 2% w/v of PLGA polymer cross linked with 2% w/v of dextran

Fig. 67 Linear regression of in vitro release pattern of hepatitis B vaccine from PLGA microspheres prepared by 2% w/v of PLGA polymer cross linked with 2.5% w/v of dextran

Fig. 68 Linear regression of in vitro release pattern of hepatitis B vaccine from PLGA microspheres prepared by 2% w/v of PLGA polymer cross linked with 3% w/v of dextran

Fig. 69 Effect of various concentrations of PLGA polymer with 2% v/v of glutaraldehyde as cross linking agent on in vitro release pattern of hepatitis B vaccine from PLGA microspheres

Fig. 70 Linear regression of in vitro release pattern of hepatitis B vaccine from PLGA microspheres prepared by 1% w/v of PLGA polymer cross linked with 2% v/v of glutaraldehyde

Fig. 71 Linear regression of in vitro release pattern of hepatitis B vaccine from PLGA microspheres prepared by 2% w/v of PLGA polymer cross linked with 2% v/v of glutaraldehyde

Fig. 72 Linear regression of in vitro release pattern of hepatitis B vaccine from PLGA microspheres prepared by 3% w/v of PLGA polymer cross linked with 2% v/v of glutaraldehyde

Fig. 73 Effect of various concentrations of PLGA polymer with 2% w/v of dextran as cross linking agent on in vitro release pattern of hepatitis B vaccine from PLGA microspheres

Fig. 74 Linear regression of in vitro release pattern of hepatitis B vaccine from PLGA microspheres prepared by 1% w/v of PLGA polymer cross linked with 2% w/v of dextran

Fig. 75 Linear regression of in vitro release pattern of hepatitis B vaccine from PLGA microspheres prepared by 2% w/v of PLGA polymer cross linked with 2% w/v of dextran

Fig. 76 Linear regression of in vitro release pattern of hepatitis B vaccine from PLGA microspheres prepared by 3% w/v of PLGA polymer cross linked with 2% w/v of dextran
Fig. 77 A comparative study on in vitro release pattern of hepatitis B vaccine from PLGA microspheres

Fig. 78 Effect of various concentrations of glutaraldehyde on in vitro release pattern of hepatitis B vaccine from PLA microspheres

Fig. 79 Linear regression of in vitro release pattern of hepatitis B vaccine from PLA microspheres prepared by 2% w/v of PLA polymer cross linked with 1.5% v/v of glutaraldehyde

Fig. 80 Linear regression of in vitro release pattern of hepatitis B vaccine from PLA microspheres prepared by 2% w/v of PLA polymer cross linked with 2% v/v of glutaraldehyde

Fig. 81 Linear regression of in vitro release pattern of hepatitis B vaccine from PLA microspheres prepared by 2% w/v of PLA polymer cross linked with 2.5% v/v of glutaraldehyde

Fig. 82 Linear regression of in vitro release pattern of hepatitis B vaccine from PLA microspheres prepared by 2% w/v of PLA polymer cross linked with 3% v/v of glutaraldehyde

Fig. 83 Effect of various concentrations of dextran on in vitro release pattern of hepatitis B vaccine from PLA microspheres

Fig. 84 Linear regression of in vitro release pattern of hepatitis B vaccine from PLA microspheres prepared by 2% w/v of PLA polymer cross linked with 1.5% w/v of dextran

Fig. 85 Linear regression of in vitro release pattern of hepatitis B vaccine from PLA microspheres prepared by 2% w/v of PLA polymer cross linked with 2% w/v of dextran

Fig. 86 Linear regression of in vitro release pattern of hepatitis B vaccine from PLA microspheres prepared by 2% w/v of PLA polymer cross linked with 2.5% w/v of dextran

Fig. 87 Linear regression of in vitro release pattern of hepatitis B vaccine from PLA microspheres prepared by 2% w/v of PLA polymer cross linked with 3% w/v of dextran

Fig. 88 Effect of various concentrations of PLA polymer with 2% v/v of glutaraldehyde as cross linking agent on in vitro release pattern of hepatitis B vaccine from PLA microspheres

Fig. 89 Linear regression of in vitro release pattern of hepatitis B vaccine from PLA microspheres prepared by 1% w/v of PLA polymer cross linked with 2% v/v of glutaraldehyde

Fig. 90 Linear regression of in vitro release pattern of hepatitis B vaccine from PLA microspheres prepared by 2% w/v of PLA polymer cross linked with 2% v/v of glutaraldehyde

Fig. 91 Linear regression of in vitro release pattern of hepatitis B vaccine from PLA microspheres prepared by 3% w/v of PLA polymer cross linked with 2% v/v of glutaraldehyde

Fig. 92 Effect of various concentrations of PLA polymer with 2% w/v of dextran as cross linking agent on in vitro release pattern of hepatitis B vaccine from PLA microspheres

Fig. 93 Linear regression of in vitro release pattern of hepatitis B vaccine from PLA microspheres prepared by 1% w/v of PLA polymer cross linked with 2% w/v of dextran

Fig. 94 Linear regression of in vitro release pattern of hepatitis B vaccine from PLA microspheres prepared by 2% w/v of PLA polymer cross linked with 2% w/v of dextran

Fig. 95 Linear regression of in vitro release pattern of hepatitis B vaccine from PLA microspheres prepared by 3% w/v of PLA polymer cross linked with 2% w/v of dextran

Fig. 96 A comparative study on in vitro release pattern of hepatitis B vaccine from PLA microspheres

Fig. 97 Effect of various concentrations of glutaraldehyde on in vitro release pattern of hepatitis B vaccine from chitosan microspheres

Fig. 98 Linear regression of in vitro release pattern of hepatitis B vaccine from chitosan microspheres prepared by 1% w/v of chitosan polymer cross linked with 0.5% v/v of glutaraldehyde

Fig. 99 Linear regression of in vitro release pattern of hepatitis B vaccine from chitosan microspheres prepared by 1% w/v of chitosan polymer cross linked with 1% v/v of glutaraldehyde
Fig. 100 Linear regression of *in vitro* release pattern of hepatitis B vaccine from chitosan microspheres prepared by 1% w/v of chitosan polymer cross linked with 1.5% v/v of glutaraldehyde.

Fig. 101 Linear regression of *in vitro* release pattern of hepatitis B vaccine from chitosan microspheres prepared by 1% w/v of chitosan polymer cross linked with 2% v/v of glutaraldehyde.

Fig. 102 Linear regression of *in vitro* release pattern of hepatitis B vaccine from chitosan microspheres prepared by 1% w/v of chitosan polymer cross linked with 2.5% v/v of glutaraldehyde.

Fig. 103 Linear regression of *in vitro* release pattern of hepatitis B vaccine from chitosan microspheres prepared by 1% w/v of chitosan polymer cross linked with 3% v/v of glutaraldehyde.

Fig. 104 Effect of various concentrations of dextran on *in vitro* release pattern of hepatitis B vaccine from chitosan microspheres.

Fig. 105 Linear regression of *in vitro* release pattern of hepatitis B vaccine from chitosan microspheres prepared by 2% w/v of chitosan polymer cross linked with 0.5% w/v of dextran.

Fig. 106 Linear regression of *in vitro* release pattern of hepatitis B vaccine from chitosan microspheres prepared by 2% w/v of chitosan polymer cross linked with 1% w/v of dextran.

Fig. 107 Linear regression of *in vitro* release pattern of hepatitis B vaccine from chitosan microspheres prepared by 2% w/v of chitosan polymer cross linked with 1.5% w/v of dextran.

Fig. 108 Linear regression of *in vitro* release pattern of hepatitis B vaccine from chitosan microspheres prepared by 2% w/v of chitosan polymer cross linked with 2% w/v of dextran.

Fig. 109 Linear regression of *in vitro* release pattern of hepatitis B vaccine from chitosan microspheres prepared by 2% w/v of chitosan polymer cross linked with 2.5% w/v of dextran.

Fig. 110 Linear regression of *in vitro* release pattern of hepatitis B vaccine from chitosan microspheres prepared by 2% w/v of chitosan polymer cross linked with 3% w/v of dextran.

Fig. 111 Effect of various concentrations of chitosan polymer with 2% v/v of glutaraldehyde as cross linking agent on *in vitro* release pattern of hepatitis B vaccine from chitosan microspheres.

Fig. 112 Linear regression of *in vitro* release pattern of hepatitis B vaccine from chitosan microspheres prepared by 1% w/v of chitosan polymer cross linked with 2% v/v of glutaraldehyde.

Fig. 113 Linear regression of *in vitro* release pattern of hepatitis B vaccine from chitosan microspheres prepared by 2% w/v of chitosan polymer cross linked with 2% v/v of glutaraldehyde.

Fig. 114 Linear regression of *in vitro* release pattern of hepatitis B vaccine from chitosan microspheres prepared by 3% w/v of chitosan polymer cross linked with 2% v/v of glutaraldehyde.

Fig. 115 Effect of various concentrations of chitosan polymer with 2% w/v of dextran as cross linking agent on *in vitro* release pattern of hepatitis B vaccine from chitosan microspheres.

Fig. 116 Linear regression of *in vitro* release pattern of hepatitis B vaccine from chitosan microspheres prepared by 1% w/v of chitosan polymer cross linked with 2% w/v of dextran.

Fig. 117 Linear regression of *in vitro* release pattern of hepatitis B vaccine from chitosan microspheres prepared by 2% w/v of chitosan polymer cross linked with 2% w/v of dextran.

Fig. 118 Linear regression of *in vitro* release pattern of hepatitis B vaccine from chitosan microspheres prepared by 3% w/v of chitosan polymer cross linked with 2% w/v of dextran.

Fig. 119 A comparative study on *in vitro* release pattern of hepatitis B vaccine from chitosan microspheres.

Fig. 120 A comparative study on *in vitro* release pattern of hepatitis B vaccine from PLGA / PLA / chitosan microspheres.

Fig. 121 A comparative study on specific immunoglobulin (anti HBs) (IU/L) of Wistar rats with various types of treatment groups.

Fig. 122 A comparative study on serum IgG level (mg/dl) of Wistar rats with various types of treatment groups.
Fig. 123 A comparative study on serum IgA level (mg/dl) of Wistar rats with various types of treatment groups

Fig. 124 A comparative study on serum IgM level (mg/dl) of Wistar rats with various types of treatment groups

Fig. 125 A comparative study on serum IgE level (IU/dl) of Wistar rats with various types of treatment groups