CHAPTER 1

PRELIMINARIES

In this chapter we collect the basic definitions and theorems which are needed for the subsequent chapters. For graph theoretic terminology, we refer to Harary [10].

Definition 1.1 A graph \(G \) is a finite non-empty set of objects called vertices together with a set of unordered pairs of distinct vertices of \(G \), called edges. The vertex set and the edge set of \(G \) are denoted by \(V(G) \) or simply \(V \) and \(E(G) \) or simply \(E \) respectively.

If \(e = \{u, v\} \) is an edge, we write \(e = uv \); we say that \(e \) joins the vertices \(u \) and \(v \); \(u \) and \(v \) are adjacent vertices; \(u \) and \(v \) are incident with \(e \).

If two vertices are not joined, then we say that they are non-adjacent. If two distinct edges are incident with a common vertex, then they are said to be adjacent to each other.

\[p = | V(G) | = | V | \] is called the order of \(G \) and \(q = | E(G) | \) is called the size of \(G \). A graph of order \(p \) and size \(q \) is called a \((p, q)\) - graph.

Definition 1.2 A graph \(H \) is called a subgraph of \(G \) if \(V(H) \subseteq V(G) \) and \(E(H) \subseteq E(G) \). A spanning subgraph of \(G \) is a subgraph \(H \) with \(V(H) = V(G) \). For any set \(S \) of
vertices of G, the induced subgraph $G[S]$ is the maximal subgraph of G with vertex set S. Thus two vertices of S are adjacent in $G[S]$ if and only if they are adjacent in G.

Let v be a vertex of a graph G. The induced subgraph $G[V(G) - \{v\}]$ is denoted by $G - v$; it is the subgraph of G obtained by the removal of v and edges incident with v.

Definition 1.3 The degree of a vertex v in a graph G is the number of edges of G incident with v and is denoted by $\deg_G v$ or $\deg v$. A vertex of degree 0 in G is called an isolated vertex; a vertex of degree 1 is called a pendant vertex or an end vertex of G.

A graph is regular of degree k if every vertex of G has degree k. Such graphs are called k-regular graphs.

Definition 1.4 A graph G is complete if every pair of vertices in G are adjacent. A complete graph on p vertices is denoted by K_p. A clique of a graph is a maximal complete subgraph.

Definition 1.5 A bipartite graph G is a graph whose vertex set V can be partitioned into two subsets V_1 and V_2 such that every edge of G joins V_1 with V_2; (V_1, V_2) is called a bipartition of G. If G contains every edge joining V_1 and V_2, then G is called a complete bipartite graph. The complete bipartite graph with bipartition (V_1, V_2) such that $|V_1| = m$ and $|V_2| = n$ is denoted by $K_{m,n}$. A star is a complete bipartite graph $K_{1,n}$.

Definition 1.6 Let u and v be vertices of a graph G. A u-v walk of G is a finite, alternating sequence $u = u_0, e_1, u_1, e_2, \ldots, e_n, u_n = v$ of vertices and edges beginning
with vertex \(u \) and ending with vertex \(v \) such that \(e_i = u_{i-1}u_i, \ i = 1, 2, ..., n \). The number \(n \) is called the \textit{length} of the walk. The walk is said to be \textit{open} if \(u \) and \(v \) are distinct vertices; it is \textit{closed} otherwise. A walk \(u_0, e_1, u_1, e_2, u_2, ..., e_n, u_n \) is determined by the sequence \(u_0, u_1, u_2, ..., u_n \) of its vertices and hence we specify this walk by \(u_0, u_1, u_2, ..., u_n \). A walk in which all the vertices are distinct is called a path. A closed walk \(u_0, u_1, u_2, ..., u_n \) in which \(u_0, u_1, u_2, ..., u_{n-1} \) are distinct is called a \textit{cycle}. A path on \(n \) vertices is denoted by \(P_n \) and a cycle on \(n \) vertices is denoted by \(C_n \).

Definition 1.7 A graph \(G \) is said to be \textit{connected} if any two distinct vertices of \(G \) are joined by a path. A maximal connected subgraph of \(G \) is called a \textit{component} of \(G \).

Definition 1.8 A \textit{cut-vertex} of a graph \(G \) is a vertex whose removal increases the number of components. A \textit{non separable} graph is connected, nontrivial and has no cut vertices. A \textit{block} of a graph is a maximal non separable subgraph. A graph in which each block is complete is called a \textit{block graph}.

For a cut-vertex \(v \) in a connected graph \(G \) and a component \(H \) of \(G - v \), the subgraph \(H \) and the vertex \(v \) together with all edges joining \(v \) and \(V(H) \) is called a \textit{branch of \(G \) at \(v \)}.. An \textit{end-block} of \(G \) is a block containing exactly one cut-vertex of \(G \). Thus every end-block is a branch of \(G \).

Definition 1.9 The \textit{neighborhood} of a vertex \(v \) is the set \(N(v) \) consisting of all vertices \(u \) which are adjacent with \(v \). A vertex \(v \) is a \textit{simplicial vertex} or \textit{extreme vertex} if the subgraph induced by its neighbors is complete.

Definition 1.10 A graph \(G \) is called \textit{acyclic} if it has no cycles. A connected acyclic graph is called a \textit{tree}. A \textit{caterpillar} is a tree for which the removal of all the end vertices gives a path. A \textit{double star} is a tree of diameter 3.
Theorem 1.11[10] Let v be a vertex of a connected graph G. The following statements are equivalent:

(i) v is a cut vertex of G.

(ii) There exist vertices u and w distinct from v such that v is on every u-w path.

(iii) There exists a partition of the set of vertices $V - \{v\}$ into subsets U and W such that for any vertices $u \in U$ and $w \in W$, the vertex v is on every u-w path.

Theorem 1.12[10] Let G be a connected graph with at least three vertices. The following statements are equivalent:

(i) G is a block.

(ii) Every two vertices of G lie on a common cycle.

Theorem 1.13[10] Every nontrivial connected graph has at least two vertices which are not cut vertices.

Definition 1.14 Let G be a connected graph. The distance $d(u,v)$ between two vertices u and v in G is the length of a shortest u-v path in G.

The eccentricity $e(u)$ of a vertex u is defined by $e(u) = \max \{d(u,v) : v \in V\}$. Each vertex in V at which the eccentricity function is minimized is called a central vertex of G and the set of all central vertices of G is called the center of G and is denoted by $Z(G)$.

The radius r and diameter d of G are defined by $r = \min \{e(v) : v \in V\}$ and $d = \max \{e(v) : v \in V\}$ respectively.
Definition 1.15 A vertex v in a graph G is called an eccentric vertex of a vertex u if $d(u,v) = e(u)$. In general we call a vertex v an eccentric vertex if it is an eccentric vertex of some vertex u and call it a non-eccentric vertex otherwise.

A vertex v is a peripheral vertex of G if $e(v) = d$. The set of all peripheral vertices of G is called the periphery of G and is denoted by $P(G)$.

Definition 1.16 For vertices u and v in a connected graph G, a $u-v$ path of length $d(u,v)$ is called an $u-v$ geodesic. A vertex y is said to lie on a $u-v$ geodesic P if y is a vertex of P including the vertices u and v.

Definition 1.17 The closed interval $I [u,v]$ consists of all vertices lying on some $u-v$ geodesic of G, while for $S \subseteq V$, $I [S] = \bigcup_{u,v \in S} I[u,v]$. A set S of vertices is a geodetic set if $I [S] = V$, and the minimum cardinality of a geodetic set is the geodetic number $g(G)$. A geodetic set of cardinality $g(G)$ is called a g-set.

A pair u, v of distinct vertices of G is said to openly geodominate a vertex y if y is an internal vertex of a $u-v$ geodesic in G. A set S is an open geodominating set of G if for each vertex y, either y is a simplicial vertex and $y \in S$ or y is openly geodominated by some pair of vertices of S. An open geodominating set of minimum cardinality is an og-set, and this cardinality is the open geodomination number $og(G)$.

Consider the graph G of Figure 1.1. For the vertices w and y in G, $d(w,y) = 2$ and every vertex of G lies on a $w-y$ geodesic in G. Thus $\{w,y\}$ is the unique minimum geodetic set of G and so $g(G) = 2$.

5
The closed intervals in a connected graph G were studied and characterized by Nebeský [14,15] and were also investigated extensively in the book by Mulder [13], where it was shown that these sets provide an important tool for studying metric properties of connected graphs. The geodetic number of a graph was introduced in [1,11] and further studied in [5]. It was shown in [11] that determining the geodetic number of a graph is an NP-hard problem. Geodetic concepts were first studied from the point of view of domination by Chartrand, Harary, Swart and Zhang in [4], where a pair x, y of vertices in a nontrivial connected graph G is said to geodominate a vertex v of G if $v \in I[x,y]$, that is, v lies on an $x-y$ geodesic of G. In [4], geodetic sets and the geodetic number were referred to as geodominating sets and geodomination number and it is this terminology that we adopt in this thesis.

![Figure 1.1](image)

\textbf{Theorem 1.18}[4] Every geodominating set of a graph G contains every simplicial vertex of G. In particular, if the set W of simplicial vertices is a geodominating set of G, then W is the unique g-set and the unique og-set of G and so $g(G) = og(G) = |W|$.

\textbf{Theorem 1.19}[1] No cut vertex of G belongs to any minimum geodetic set of G.
Theorem 1.20[11] For the wheel $W_{1,n}$, $g(W_{1,n}) = \begin{cases} 4 & \text{for } n = 3, \\ \left\lfloor \frac{n}{2} \right\rfloor & \text{for } n \geq 4. \end{cases}$

Theorem 1.21[1] Let G be a connected graph. Then

(i) $g(G) = p$ if and only if $G = K_p$.

(ii) $g(G) = 2$ if and only if there exist peripheral vertices u and v such that every vertex of G is on a diametral path joining u and v.

Theorem 1.22[2] Let G be a connected graph of order $p \geq 3$. Then $g(G) = p - 1$ if and only if $G = K_1 + \bigcup m_jK_j$, where $\sum m_j \geq 2$.

Theorem 1.23[5] For integers $m, n \geq 2$, $g(K_{m,n}) = \min \{m, n, 4\}$.

Definition 1.24[8] For a connected graph G and a set $W \subseteq V(G)$, a tree T contained in G is a Steiner tree with respect to W if T is a tree of minimum order with $W \subseteq V(T)$. The set $S(W)$ consists of all vertices in G that lie on some Steiner tree with respect to W. The set W is a Steiner set for G if $S(W) = V(G)$. The minimum cardinality among the Steiner sets of G is the Steiner number $s(G)$.

Theorem 1.25[8] Let G be a connected graph of order $p \geq 2$. Then $s(G) = p$ if and only if $G = K_p$.

Theorem 1.26[8] Let G be a connected graph of order $p \geq 3$. Then $s(G) = p - 1$ if and only if G contains a cut-vertex of degree $p - 1$.

Theorem 1.27[8] Let G be a connected graph of order $p \geq 2$. Then $s(G) = 2$ if and only if $g(G) = 2$.

7
Definition 1.28[3] For vertices u and v in a connected graph G, the detour distance $D(u,v)$ is the length of a longest u-v path in G.

The detour eccentricity $e_D(u)$ of a vertex u is defined by $e_D(u) = \max \{ D(u,v) : v \in V \}$. Each vertex in V at which the detour eccentricity function is minimized is called a detour central vertex of G and the set of all detour central vertices of G is called the detour center of G and is denoted by $Z_D(G)$.

The detour radius R and detour diameter D of G are defined by $R = \min \{ e_D(v) : v \in V \}$ and $D = \max \{ e_D(v) : v \in V \}$ respectively.

Definition 1.29[3] A vertex v in a graph G is called a detour eccentric vertex of a vertex u if $D(u,v) = e_D(u)$. In general we call a vertex v a detour eccentric vertex if it is a detour eccentric vertex of some vertex u and call it a non-detour eccentric vertex otherwise.

A vertex v is a detour peripheral vertex of G if $e_D(v) = D$. The set of all detour peripheral vertices of G is called the detour periphery of G and is denoted by $P_D(G)$.

Definition 1.30 For vertices u and v in a connected graph G, the closed interval $I_D[u,v]$ consists of all vertices lying on some u-v detour of G, while for $S \subseteq V$, $I_D[S] = \bigcup_{u,v \in S} I_D[u,v]$. A set S of vertices is a detour set if $I_D[S] = V$, and the minimum cardinality of a detour set is the detour number $dn(G)$. A detour set of cardinality $dn(G)$ is called a minimum detour set.

Consider the graph G of Figure 1.2. For vertices u and v in G, $D(u,v) = 5$, where the hamiltonian path u, z, y, w, x, v is a u-v detour in G. Thus $\{ u, v \}$ is a
minimum detour set and so $dn(G) = 2$. The detour number of a graph was introduced in [6] and further studied in [7].

![Graph G](image)

Figure 1.2

Theorem 1.31[3] For every connected graph G, $rad_D G \leq diam_D G \leq 2 rad_D G$.

Theorem 1.32[6] Every end-vertex of a non-trivial connected graph G belongs to every detour set of G. Moreover, if the set S of all end-vertices of G is a detour set, then S is the unique minimum detour set for G.

Theorem 1.33[6] If T is a tree with k end-vertices, then $dn(T) = k$.

Notation 1.34 For any real number x, $\lceil x \rceil$ denotes the smallest integer greater than or equal to x.

Throughout the following, G denotes a connected graph with at least two vertices.