CHAPTER 5

THE VERTEX DETOUR NUMBER OF A GRAPH*

In this chapter we introduce the concept of vertex detour number $d_v(G)$ of a graph G at a vertex x and investigate its properties. We determine bounds for it and find the same for some special classes of graphs. We define an x-detour superior vertex of a graph and characterize graphs G for which $d_v(G) = 1$ in terms of x-detour superior vertices. The relationship between the vertex detour number $d_v(G)$ at any vertex x and the detour number $dn(G)$ of a graph G is found to be $dn(G) \leq d_v(G) + 1$ and we give a realization theorem for this inequality. It is shown that if G is a graph of order p, then $d_v(G) \leq p - e_D(x)$ for any vertex x in G. Connected graphs of order p with vertex detour numbers $p - 1$ or $p - 2$ for every vertex are characterized. It is proved that for every non-trivial tree T, $d_v(T) = p - D$ or $d_v(T) = p - D + 1$ for every vertex x of T if and only if T is a caterpillar. For positive integers R, D and $n \geq 2$ with $R < D \leq 2R$, there exists a connected graph G with $rad_D G = R$, $diam_D G = D$ and $d_v(G) = n$ or $d_v(G) = n - 1$ for every vertex x of G. Also, for each triple D, n and p of integers with $1 \leq n \leq p - D + 1$ and $D \geq 4$, there is a connected graph G of order p, detour diameter D and $d_v(G) = n$ or $d_v(G) = n - 1$ for every vertex x of G.

* A part of this chapter has been accepted for publication in AKCE J. Graphs. Combin. [19].
Definition 5.1 Let \(x \) be a vertex of a connected graph \(G \). A set \(S \) of vertices of \(G \) is an \(x \)-detour set if each vertex \(v \) of \(G \) lies on an \(x \)-\(y \) detour in \(G \) for some element \(y \) in \(S \). The minimum cardinality of an \(x \)-detour set of \(G \) is defined as the \(x \)-detour number of \(G \) and is denoted by \(d_x(G) \) or simply \(d_x \). An \(x \)-detour set of cardinality \(d_x(G) \) is called a \(d_x \)-set of \(G \).

Result 5.2 For any vertex \(x \) in \(G \), \(x \) does not belong to any \(d_x \)-set of \(G \).

Proof. Suppose that \(x \) belongs to a \(d_x \)-set, say \(S_x \) of \(G \). Since \(G \) is a connected graph with at least two vertices, it follows from the definition of an \(x \)-detour set that \(S_x \) contains a vertex \(v \) different from \(x \). Since the vertex \(x \) lies on every \(x \)-\(v \) detour in \(G \), it follows that \(T = S_x \setminus \{x\} \) is an \(x \)-detour set of \(G \), which is a contradiction to \(S_x \) a minimum \(x \)-detour set of \(G \).

Example 5.3

(i) \(d_x(K_p) = 1 \) for every vertex \(x \) in \(K_p \).

(ii) For the graph \(G \) given in Figure 5.1, the minimum vertex detour sets and the vertex detour numbers are given in Table 5.1.

![Figure 5.1](image-url)
<table>
<thead>
<tr>
<th>Vertex</th>
<th>Minimum Vertex Detour Sets</th>
<th>Vertex Detour Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>{y, w}, {z, w}, {u, w}</td>
<td>2</td>
</tr>
<tr>
<td>y</td>
<td>{w}</td>
<td>1</td>
</tr>
<tr>
<td>z</td>
<td>{w}</td>
<td>1</td>
</tr>
<tr>
<td>u</td>
<td>{w}</td>
<td>1</td>
</tr>
<tr>
<td>v</td>
<td>{y, w}, {z, w}, {u, w}</td>
<td>2</td>
</tr>
<tr>
<td>w</td>
<td>{y}, {z}, {u}</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 5.1

Remark 5.4 Let \(x\) be any vertex of \(G\). Then for any vertex \(y\) belonging to a \(d_x\)-set \(S_x\) of \(G\), the internal vertices of an \(x-y\) detour may belong to \(S_x\). For the graph \(G\) given in Figure 5.1, \(S_x = \{u, w\}\) is a \(d_x\)-set of \(G\) and \(u\) belonging to \(S_x\) is an internal vertex of the \(x-w\) detour: \(x, z, u, v, w\). Also, \(S_x = \{y, w\}\) is a \(d_x\)-set of \(G\) such that \(y\) is not an internal vertex of any \(x-w\) detour and \(w\) is not an internal vertex of any \(x-y\) detour in \(G\).

Theorem 5.5 Let \(x\) be any vertex of a connected graph \(G\).

(i) Every end-vertex of \(G\) other than the vertex \(x\) (whether \(x\) is end-vertex or not) belongs to every \(x\)-detour set.

(ii) No cut vertex of \(G\) belongs to any \(d_x\)-set.
Proof. (i) Let x be any vertex of G. Let $v \neq x$ be an end-vertex of G. Then v is the terminal vertex of an x-v detour and v is not an internal vertex of any detour so that v belongs to every x-detour set of G.

(ii) Let y be a cut vertex of G. Then by Theorem 1.11, there exists a partition of the set of vertices $V - \{y\}$ into subsets U and W such that for any vertex $u \in U$ and $w \in W$, the vertex y is on every u-w path. Hence, if $x \in U$, then for any vertex w in W, y lies on every x-w path so that y is an internal vertex of an x-w detour. Let S_x be any d_x-set of G. Suppose $S_x \cap W = \emptyset$. Let $w_1 \in W$. Since S_x is an x-detour set, there exists an element z in S_x such that w_1 lies in some x-z detour $P : x = z_0, z_1, \ldots, w_1, \ldots, z_n = z$ in G. Then the x-w_1 subpath of P and w_1-z subpath of P both contain y so that P is not a path in G. Hence $S_x \cap W \neq \emptyset$. Let $w_2 \in S_x \cap W$. Then y is an internal vertex of an x-w_2 detour. If $y \in S_x$, let $S = S_x - \{y\}$. It is clear that every vertex that lies on an x-y detour also lies on an x-w_2 detour. Hence it follows that S is an x-detour set of G, which is a contradiction to S_x is a minimum x-detour set of G. Thus y does not belong to any d_x-set. Similarly if $x \in W$, y does not belong to any d_x-set. If $x = y$, then by Result 5.2, y does not belong to any d_x-set.

Note 5.6 Even if x is an end-vertex of G, x does not belong any d_x-set by Result 5.2.

Corollary 5.7 Let T be a tree with number of end-vertices t. Then $d_0(T) = t - 1$ or $d_e(T) = t$ according as x is an end-vertex or not. In fact, if W is the set of all end-vertices of T, then $W - \{x\}$ is the unique d_x-set of T.

Proof. Let W be the set of all end-vertices of T. It follows from Result 5.2 and Theorem 5.5 that $W - \{x\}$ is the unique d_x-set of T for any end-vertex x in T and W is
the unique d_i-set of T for any cut vertex x in T. Thus $W - \{x\}$ is the unique d_i-set of T for any vertex x in T.

Corollary 5.8 Let P_n be a non-trivial path. Then $d_i(P_n) = 1$ or $d_i(P_n) = 2$ according as x is an end-vertex or not.

Corollary 5.9 For any star $K_{1,n} (n \geq 2)$, $d_i(K_{1,n}) = n - 1$ or $d_i(K_{1,n}) = n$ according as x is an end-vertex or not.

Theorem 5.10 For any hamiltonian graph G, $d_i(G) = 1$ for every vertex x in G.

Proof. Let C be a hamiltonian cycle of G. Let x be any vertex of G and let y be any adjacent vertex of x in C. Clearly every vertex of G lies on a detour joining x and y. Thus $d_i(G) = 1$ for every vertex x in G.

Corollary 5.11 For the n-cube $Q_n (n \geq 2)$, $d_i(Q_n) = 1$ for every vertex x in Q_n.

Remark 5.12 The converse of Theorem 5.10 is false. For the graph G given in Figure 5.2, $d_i(G) = 1$ for every vertex x in G. But G is not hamiltonian.

![Figure 5.2](image-url)
Corollary 5.13 For any cycle C, $d_x(C) = 1$ for every vertex x in C.

Corollary 5.14 For the wheel $W_n = K_1 + C_{n-1}$ ($n \geq 4$), $d_x(W_n) = 1$ for every vertex x in W_n.

Theorem 5.15 If a connected graph G has a hamiltonian path, then $d_x(G) = 1$ for at least two vertices.

Proof. Let P be a hamiltonian path with end-vertices x and y. Then it is clear that $d_x(G) = d_y(G) = 1$.

The following theorem is an easy consequence of the definition of the vertex detour number.

Theorem 5.16

(i) For $m = n = 1$, $d_x(K_{m,n}) = 1$ for every vertex x in G.

(ii) For $m, n \geq 2$, $d_x(K_{m,n}) = 1$ for every vertex x in G.

(iii) For $m = 1$ and $n \geq 2$, $d_x(K_{m,n}) = n$ or $d_x(K_{m,n}) = n - 1$ for every vertex x of G.

Theorem 5.17 Let G be a connected graph with cut vertices and let S_x be an x-detour set of G. Then every branch of G contains an element of $S_x \cup \{x\}$.

Proof. Suppose that there is a branch B of G at a cut vertex v such that B contains no vertex of $S_x \cup \{x\}$. Then clearly, $x \in V - (S_x \cup V(B))$. Let $u \in V(B) - \{v\}$. Since S_x is an x-detour set, there exists an element $y \in S_x$ such that u lies in some x-y detour $P : x = u_0, u_1, \ldots, u, \ldots, u_n = y$ in G. By Theorem 1.11 the x-u subpath of P and
$u-y$ subpath of P both contain v, and it follows that P is not a path, contrary to assumption.

Since every end-block B is a branch of G at some cut-vertex, it follows by Theorems 5.5 and 5.17 that every d_x-set of G together with the vertex x contains at least one vertex from B that is not a cut-vertex. Thus the following corollaries are consequences of Theorem 5.17.

Corollary 5.18 If G is a connected graph with k end-blocks, then $d_x(G) \geq k - 1$ for every vertex x in G. In particular, if x is a cut vertex of G, then $d_x(G) \geq k$.

Corollary 5.19 If k is the maximum number of blocks to which a vertex in a graph G belongs, then $d_x(G) \geq k - 1$ for every vertex x in G. In particular, if x is a cut vertex of G, then $d_x(G) \geq k$.

Theorem 5.20 For any vertex x in G, $1 \leq d_x(G) \leq p - 1$.

Proof. It is clear from the definition of d_x-set that $d_x(G) \geq 1$. Also since the vertex x does not belong to any d_x-set, it follows that $d_x(G) \leq p - 1$.

Remark 5.21 The bounds for $d_x(G)$ in Theorem 5.20 are sharp. For the cycle C_n, $d_x(C_n) = 1$ for every vertex x in C_n. Also for any non-trivial path P_n, $d_x(P_n) = 1$ for any end-vertex x in P_n. For the graph K_2, $d_x(K_2) = p - 1$ for every vertex x in K_2.

Now we proceed to characterize graphs for which the lower bound in Theorem 5.20 is attained. For this, we introduce the following definition.

Definition 5.22 Let x be any vertex in G. A vertex y in G is said to be an x-detour superior vertex if for any vertex z with $D(x,y) < D(x,z)$, z lies on an $x-y$ detour.
Example 5.23

(i) In the even cycle C_{2n}, both eccentric and detour eccentric vertices of x are x-detour superior vertices.

(ii) For the graph G given in Figure 5.3, the vertex detour superior vertices are given in Table 5.2.

![Diagram of graph G]

Figure 5.3

<table>
<thead>
<tr>
<th>Vertex</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>x_6</th>
<th>x_7</th>
<th>x_8</th>
<th>x_9</th>
<th>x_{10}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertex detour superior vertices</td>
<td>x_9, x_{10}</td>
<td>x_9, x_{10}</td>
<td>x_2, x_4, x_7</td>
<td>x_9, x_{10}</td>
<td>x_9, x_{10}</td>
<td>x_7</td>
<td>x_9, x_{10}</td>
<td>x_2, x_4</td>
<td>x_2, x_4</td>
<td>x_2, x_4</td>
</tr>
</tbody>
</table>

Table 5.2

We give below a property related with detour eccentric vertex of x and x-detour superior vertex in a graph G.

80
Theorem 5.24 Let x be any vertex in G. Then every detour eccentric vertex of x is an x-detour superior vertex.

Proof. Let y be a detour eccentric vertex of x so that $e_D(x) = D(x,y)$. If y is not an x-detour superior vertex, then there exists a vertex z in G such that $D(x,y) < D(x,z)$ and z does not lie on any x-y detour and hence $e_D(x) < D(x,z)$, which is a contradiction. ■

Note 5.25 The converse of Theorem 5.24 is not true. For the even cycle C_{2n}, the eccentric vertex of x is an x-detour superior vertex but it is not a detour eccentric vertex of x.

Theorem 5.26 Let G be a connected graph. For a vertex x in G, $d_s(G) = 1$ if and only if there exists an x-detour superior vertex y in G such that every vertex of G is on an x-y detour.

Proof. Let $d_s(G) = 1$ and $S_x = \{y\}$ be a d_s-set of G. If y is not an x-detour superior vertex, then there is a vertex z in G with $D(x,y) < D(x,z)$ and z does not lie on any x-y detour. Thus S_x is not a d_s-set of G, which is a contradiction. The converse is clear from the definition. ■

In the following theorem, we establish the relationship between the vertex detour number of a vertex and the detour number of a graph.

Theorem 5.27 For any vertex x in G, $dn(G) \leq d_s(G) + 1$.

Proof. Let x be any vertex of G and let S_x be a d_s-set of G. Then every vertex of G lies on an x-y detour for some y in S_x. Thus $S_x \cup \{x\}$ is a detour set of G. Since $dn(G)$ is the minimum cardinality of a detour set, it follows that $dn(G) \leq d_s(G) + 1$. ■

81
Note 5.28 The bound in Theorem 5.27 is sharp. For the complete graph K_p, $dn(K_p) = d_x(K_p) + 1$ for every vertex x in K_p.

Theorem 5.29 For any two integers a and b with $2 \leq a \leq b + 1$, there exists a connected graph G with $dn(G) = a$ and $d_x(G) = b$ for some vertex x in G.

Proof. For $2 \leq a = b + 1$, let G be any tree with a end-vertices. By Theorem 1.33, $dn(G) = a$ and by Corollary 5.7, $d_x(G) = b$ for an end-vertex x in G. Then assume that $2 \leq a < b + 1$. Let $F = (K_3 \cup P_2 \cup (b - a + 1)K_1) + K_2$, where $U = V(K_3) = \{u_1, u_2, u_3\}$, $W = V(P_2) = \{w_1, w_2\}$, $X = V((b - a + 1)K_1) = \{x_1, x_2, \ldots, x_{b-a+1}\}$ and $V(K_2) = \{x, y\}$. Let G be the graph obtained from F by adding $a - 1$ new vertices $z_1, z_2, \ldots, z_{a-1}$ and joining each z_i ($1 \leq i \leq a - 1$) to u_1. The graph G is shown in Figure 5.4. Let $Z = \{z_1, z_2, \ldots, z_{a-1}\}$ be the set of end vertices of G.

![Figure 5.4](attachment:image.png)

First, we show that $dn(G) = a$. By Theorem 1.32, every detour set of G contains Z. Since $I_d[Z] = Z \cup \{u_1\} \neq V(G)$, it follows that Z is not a detour set of G.

82
and so $dn(G) > |Z| = a - 1$. On the other hand, let $S = Z \cup \{w_1\}$. Then $D(z_1, w_1) = 8$
and for each i with $1 \leq i \leq b - a + 1$, the path $z_1, u_1, u_2, u_3, y, x_i, x, w_2, w_1$ is a z_1-w_1
detour in G. Hence S is a detour set of G and so $dn(G) \leq |S| = a$. Therefore, $dn(G) = a$.

Next we show that $d_s(G) = b$ for the vertex x. Let S_x be a minimum x-detour set
of G. By Theorem 5.5(i), $Z \subseteq S_x$. Since $D(x, z) = 7$ and no x_i $(1 \leq i \leq b - a + 1)$ lies
on an $x-z$ detour for any $z \in Z$, Z is not an x-detour set of G. Now we claim that $X \subseteq S_x$. Assume, to the contrary, $X \not\subseteq S_x$. Then there exists an x, such that $x_i \not\in S_x$ $(1 \leq i \leq b - a + 1)$. Now this x_i does not lie on any $x-v$ detour for $v \neq x_i$ and $v \in S_x$, this is a
contradiction to S_x is a minimum x-detour set. Thus $X \subseteq S_x$. It is clear that $X \cup Z$ is
an x-detour set. Hence it follows that $X \cup Z$ is a minimum x-detour set so that $d_s(G) = a - 1 + b - a + 1 = b$.

Bounds for the Vertex Detour Number of a Graph

We have seen that if G is a connected graph of order $p \geq 2$, then $1 \leq d_s(G) \leq p - 1$ for any vertex x in G. Also we have for a vertex x in G, $d_s(G) = 1$ if and only if
there is an x-detour superior vertex y such that every vertex of G is on an $x-y$ detour.

In the following theorem we give an improved upper bound for the vertex detour
number of a graph.

Theorem 5.30 For any vertex x in a connected graph G of order p, $d_s(G) \leq p - e_D(x)$.

Proof. Let x be any vertex of G and v a detour eccentric vertex of x. Then $D(x, v) = e_D(x)$. Let $P : x = x_0, x_1, \ldots, x_k = v$ be an $x-v$ detour in G. Let $S = V(G) - \{x_0, x_1, \ldots, x_k\}$. Since each x_i $(0 \leq i \leq k - 1)$ lies on an $x-v$ detour, S is an x-detour set of G so that $d_s(G) \leq p - e_D(x)$. ■
Remark 5.31 The bound in Theorem 5.30 is sharp. For the cycle C_p, $d_x(C_p) = 1 = p - e_D(x)$ for every vertex x in C_p. Also for the graph G given in Figure 5.3, $p = 10$, $e_D(x_7) = 7$ and $S = \{x_4, x_9, x_{10}\}$ is a d_x-set so that $d_{x_i}(G) = 3$. Thus $d_{x_i}(G) = p - e_D(x_7)$. The inequality in Theorem 5.30 can also be strict. For the same graph G given in Figure 5.3, $e_D(x_3) = 5$ and $S = \{x_4, x_7, x_9, x_{11}\}$ is a d_x-set so that $d_{x_i}(G) = 4$. Thus $d_{x_i}(G) < p - e_D(x_3)$.

Corollary 5.32 If G is a connected graph of order p and detour diameter D, then $d_x(G) \leq p - D/2$ for every vertex x in G.

Proof. Since $R \leq e_D(x)$ for every vertex x in G, it follows from Theorem 1.31 and Theorem 5.30 that $d_x(G) \leq p - D/2$.

Remark 5.33 The bound in Corollary 5.32 is sharp. For the star $K_{1,p-1}(p \geq 3)$, by Corollary 5.9, $d_x(K_{1,p-1}) = p - 1 = p - D/2$ for the cut vertex x in $K_{1,p-1}$. Also, the inequality in Corollary 5.32 can be strict. For the star $K_{1,p-1}(p \geq 3)$, by Corollary 5.9, $d_x(K_{1,p-1}) = p - 2 < p - D/2$ for an end vertex x in $K_{1,p-1}$.

Theorem 5.34 Let G be a connected graph of order $p \geq 2$. Then $G = K_2$ if and only if $d_x(G) = p - 1$ for every vertex x in G.

Proof. If $G = K_2$, then $d_x(G) = 1 = p - 1$ for every vertex x in K_2. Conversely, let $d_x(G) = p - 1$ for every vertex x in G. If $D \geq 2$, then there exists a vertex x in G such that $e_D(x) \geq 2$. By Theorem 5.30, $d_x(G) \leq p - e_D(x) \leq p - 2$, which is a contradiction. Thus $D = 1$ so that $G = K_2$.

84
Theorem 5.35 Let \(G \) be a connected graph of order \(p \geq 2 \) and \(G \neq K_3 \). Then \(G = K_{1,p-1} \) if and only if \(d_x(G) = p - 1 \) or \(d_x(G) = p - 2 \) for every vertex \(x \) of \(G \).

Proof. If \(G = K_{1,1} = K_2 \), then by Example 5.3(i), \(d_x(G) = 1 = p - 1 \) for every vertex \(x \) of \(G \). If \(G = K_{1,p-1} \) (\(p \geq 3 \)), then by Corollary 5.9, \(d_x(G) = p - 1 \) or \(d_x(G) = p - 2 \) for every vertex \(x \) of \(G \). Conversely, suppose \(d_x(G) = p - 1 \) or \(d_x(G) = p - 2 \) for every vertex \(x \) of \(G \). If \(p = 2 \), then \(G = K_2 = K_{1,1} \). If \(p = 3 \), then \(G = P_3 = K_{1,1} \). Let \(p \geq 4 \).

We prove that \(G \) is a star. Suppose \(G \) is not a star. If \(G \) is a tree, then \(G \) has at most \(p - 2 \) end-vertices. By Corollary 5.7, \(d_x(G) \leq p - 3 \) if \(x \) is an end-vertex, which is a contradiction. Now, if \(G \) is not a tree. Let \(c(G) \) be the length of a longest cycle, say \(C \), in \(G \). If \(c(G) \geq 4 \), then \(D \geq 3 \) so that \(e_D(x) \geq 3 \) for some vertex \(x \) in \(G \). Hence by Theorem 5.30, \(d_x(G) \leq p - 3 \), which is a contradiction. If \(c(G) = 3 \), let \(u, v, w, u \) be a triangle in \(G \). Since \(p \geq 4 \), there exists \(x \in V(G) - \{u, v, w\} \) such that \(x \) is adjacent to at least one of \(u, v, w \), say \(xu \in E(G) \). Then \(x, u, v, w \) is a path in \(G \) so that \(e_D(x) \geq 3 \). Then by Theorem 5.30, \(d_x(G) \leq p - 3 \), which is a contradiction. Thus \(G \) is a star.

Theorem 5.36 Let \(G \) be a connected graph of order \(p \geq 3 \). Then \(G = K_3 \) if and only if \(d_x(G) = p - 2 \) for every vertex \(x \) in \(G \).

Proof. If \(G = K_3 \), then it is clear that \(d_x(G) = 1 = p - 2 \) for every vertex \(x \) in \(G \). Conversely, let \(d_x(G) = p - 2 \) for every vertex \(x \) in \(G \). If \(D \geq 3 \), then \(e_D(x) \geq 3 \) for some vertex \(x \) in \(G \). Hence by Theorem 5.30, \(d_x(G) \leq p - e_D(x) \leq p - 3 \), which is a contradiction. If \(D = 1 \), then \(G = K_2 \) and so \(d_x(G) = p - 1 \) for every vertex \(x \) in \(G \), which is a contradiction. Hence \(D = 2 \). If \(p \geq 4 \), then \(G = K_{1,p-1} \) and hence by Corollary 5.9, \(d_x(G) = p - 1 \) for the cut vertex \(x \) in \(G \), which is a contradiction. Thus \(p = 3 \) and so \(G \) is either \(P_3 \) or \(K_3 \). If \(G = P_3 \), then by Corollary 5.7, \(d_x(G) = 2 = p - 1 \) for the cut.
vertex \(x \) in \(G \), which is a contradiction. If \(G = K_3 \), then \(d_x(G) = 1 = p - 2 \) for every vertex \(x \) in \(G \). Thus \(G = K_3 \) is the only graph which satisfies the requirement of the theorem.

Theorem 5.37 Let \(G \) be a connected graph of order \(p \geq 5 \). Then \(d_x(G) = p - 2 \) or \(d_x(G) = p - 3 \) for every vertex \(x \) of \(G \) if and only if \(G \) is a double star or \(K_{1,p-1} + e \).

Proof. It is straightforward to verify that if \(G \) is a double star or \(K_{1,p-1} + e \), then \(d_x(G) = p - 2 \) or \(d_x(G) = p - 3 \) for every vertex \(x \) of \(G \). For the converse, let \(G \) be a connected graph of order \(p \geq 5 \) such that \(d_x(G) = p - 2 \) or \(d_x(G) = p - 3 \) for every vertex \(x \) of \(G \). If \(D \leq 2 \), then \(G \) is the star \(K_{1,p-1} \) and so by Corollary 5.9, \(d_x(G) = p - 1 \) for the cut vertex \(x \) in \(G \), which is a contradiction.

Let \(D = 3 \). If \(G \) is a tree, then \(G \) is a double star and the result follows from Corollary 5.7. Assume that \(G \) is not a tree. Let \(c(G) \) denote the length of a longest cycle in \(G \). Since \(D = 3 \), it follows that \(c(G) \leq 4 \). We consider two cases.

Case 1. Let \(c(G) = 4 \). Let \(C_4 : v_1, v_2, v_3, v_4, v_1 \) be a 4-cycle in \(G \). Since \(p \geq 5 \) and \(G \) is connected, there exists a vertex \(x \) not on \(C_4 \) such that \(x \) is adjacent to some vertex, say \(v_1 \), of \(C_4 \). Then \(x, v_1, v_2, v_3, v_4 \) is a path of length 4 in \(G \) so that \(D \geq 4 \), which is a contradiction.

Case 2. Let \(c(G) = 3 \). If \(G \) contains two or more triangles, then \(c(G) = 4 \) or \(D \geq 4 \), which is a contradiction. Hence \(G \) contains an unique triangle \(C_3 : v_1, v_2, v_3, v_1 \). Now, we prove that there is exactly one vertex on \(C_3 \) of degree at least 3. If there are two or more vertices of \(C_3 \) having degree 3 or more, then \(D \geq 4 \), which is a contradiction. Thus exactly one vertex in \(C_3 \) has degree 3 or more. Since \(D = 3 \), it follows that \(G = K_{1,p-1} + e \). Now, it follows from Theorems 5.5 and 5.17 that \(d_x(G) = p - 2 \) or \(d_x(G) = p - 3 \) according as \(x \) is a cut vertex or not.

86
If \(D \geq 4 \), then \(e_D(x) \geq 4 \) for some vertex \(x \) in \(G \). Hence by Theorem 5.30, \(d_i(G) \leq p - e_D(x) \leq p - 4 \), which is a contradiction.

Remark 5.38 Theorem 5.37 is not true for \(p = 4 \). For the graph \(G \) given in Figure 5.5, \(p = 4 \) and \(d_i(G) = 1 = p - 3 \) for every vertex \(x \) in \(G \). However, \(G \) is neither a double star nor \(K_{1,p-1} + e \).

![Figure 5.5](image)

Theorem 5.39 For every non-trivial tree \(T \), \(d_i(T) = p - D \) or \(d_i(T) = p - D + 1 \) for every vertex \(x \) of \(T \) if and only if \(T \) is a caterpillar.

Proof. Let \(T \) be any non-trivial tree. Let \(P : u = v_0, v_1, \ldots, v_D = v \) be a diametral path. Let \(k \) be the number of end vertices of \(T \) and \(l \) be the number of internal vertices of \(T \) other than \(v_1, v_2, \ldots, v_{D-1} \). Then \(D - 1 + l + k = p \). By Corollary 5.7, \(d_i(T) = k \) or \(d_i(T) = k - 1 \) for every vertex \(x \) of \(T \) and so \(d_i(T) = p - D - l + 1 \) or \(d_i(T) = p - D - l \) for every vertex \(x \) of \(T \). Hence \(d_i(T) = p - D + 1 \) or \(d_i(T) = p - D \) for every vertex \(x \) of \(T \) if and only if \(l = 0 \), if and only if all the internal vertices of \(T \) lie on the diametral path \(P \), if and only if \(T \) is a caterpillar.

For every connected graph \(G \), \(rad_D G \leq diam_D G \leq 2 \ rad_D G \). Chartrand, Escuadro and Zhang\[3\] showed that every two positive integers \(a \) and \(b \) with
$a \leq b \leq 2a$ are realizable as the detour radius and detour diameter, respectively, of some connected graph. This theorem can also be extended so that the vertex detour number can be prescribed when $a < b \leq 2a$.

Theorem 5.40 For positive integers R, D and $n \geq 2$ with $R < D \leq 2R$, there exists a connected graph G with $\text{rad}_D G = R$, $\text{diam}_D G = D$ and $d_v(G) = n$ or $d_v(G) = n - 1$ for every vertex x of G.

Proof. If $R = 1$, then $D = 2$. Take $G = K_{1,n}$. Then by Corollary 5.9, $d_v(G) = n$ or $d_v(G) = n - 1$ for every vertex x of G. Now, let $R \geq 2$. We construct a graph G with the desired properties as follows.

Let $C_{R+1} : v_1, v_2, \ldots, v_{R+1}, v_1$ be a cycle of order $R + 1$ and let $P_{D-R+1} : u_0, u_1, \ldots, u_{D-R}$ be a path of order $D - R + 1$. Let H be a graph obtained from C_{R+1} and P_{D-R+1} by identifying v_1 in C_{R+1} and u_0 in P_{D-R+1}. Now, add $n - 2$ new vertices $w_1, w_2, \ldots, w_{n-2}$ to H by joining each vertex $w_i (1 \leq i \leq n - 2)$ to the vertex u_{D-R-1} and obtain the graph G of Figure 5.6. Now $\text{rad}_D G = R$, $\text{diam}_D G = D$ and G has $n - 1$ end vertices.

Case 1. Let R be even. If $R = 2$, then $d_v(G) = n$ or $d_v(G) = n - 1$ according as $x \in \{v_1, u_1, u_2, u_3, \ldots, u_{D-R-1}\}$ or $x \in \{v_2, v_3, u_{D-R}, w_1, w_2, w_3, \ldots, w_{n-2}\}$. If $R \geq 4$, then $d_v(G) = n$ or $d_v(G) = n - 1$ according as $x \in \{v_1, v_3, v_4, \ldots, v_R, u_1, u_2, u_3, \ldots, u_{D-R-1}\}$ or $x \in \{v_2, v_{R+1}, u_{D-R}, w_1, w_2, w_3, \ldots, w_{n-2}\}$.

Case 2. Let R be odd. If $R = 3$, then $d_v(G) = n$ or $d_v(G) = n - 1$ according as $x \in \{v_1, u_1, u_2, u_3, \ldots, u_{D-R-1}\}$ or $x \in \{v_2, v_3, v_4, u_{D-R}, w_1, w_2, w_3, \ldots, w_{n-2}\}$. If $R \geq 5$, then $d_v(G) = n$ or $d_v(G) = n - 1$ according as $x \in \{v_1, v_3, v_4, \ldots, v_{(R+1)/2}, v_{(R+3)/2}, \ldots, v_R, u_1, u_2, u_3, \ldots, u_{D-R-1}\}$ or $x \in \{v_2, v_{(R+3)/2}, v_{R+1}, u_{D-R}, w_1, w_2, w_3, \ldots, w_{n-2}\}$. Thus $d_v(G) = n$ or $d_v(G) = n - 1$ for every vertex x of G.

88
Figure 5.6

The graph G of Figure 5.6 is the smallest graph with the properties described in Theorem 5.40. We leave the following problem as an open question.

Problem 5.41 For positive integers R, D and $n \geq 2$ with $R = D$, does there exist a connected graph G with $\text{rad}_D G = R$, $\text{diam}_D G = D$ and $d_x(G) = n$ or $d_x(G) = n - 1$ for every vertex x of G?

In the following, we construct a graph of prescribed order, detour diameter and vertex detour number under suitable conditions.

Theorem 5.42 For each triple D, n and p of integers with $1 \leq n \leq p - D + 1$ and $D \geq 4$, there is a connected graph G of order p, detour diameter D and $d_x(G) = n$ or $d_x(G) = n - 1$ for every vertex x of G.

Proof. Let G be a graph obtained from the cycle $C_D: u_1, u_2, \ldots, u_D, u_1$ of order D by (i) adding $n - 1$ new vertices $v_1, v_2, \ldots, v_{n-1}$ and joining each vertex v_i ($1 \leq i \leq n - 1$) to u_1 and (ii) adding $p - D - n + 1$ new vertices $w_1, w_2, \ldots, w_{p - D - n + 1}$ and joining each vertex w_i ($1 \leq i \leq p - D - n + 1$) to both u_1 and u_3. The graph G has order p and detour
diameter D and is shown in Figure 5.7. If $n = 1$, then $d_x(G) = n$ for every vertex x in G.

If $n \geq 2$, then we consider two cases.

Case 1. Let D be even. If $D = 4$, then $d_x(G) = n$ or $d_x(G) = n - 1$ according as $x = u_1$ or $x \in \{u_2, u_3, u_4, v_1, v_2, \ldots, v_{n-1}, w_1, w_2, \ldots, w_{p-D-n+1}\}$. If $D \geq 6$, then $d_x(G) = n$ or $d_x(G) = n - 1$ according as $x \in \{u_1, u_2, \ldots, u_{D/2}, u_{(D+4)/2}, \ldots, u_D, w_1, w_2, \ldots, w_{p-D-n+1}\}$ or $x \in \{u_{(D+2)/2}, u_{D/2}, v_1, v_2, \ldots, v_{n-1}\}$.

Case 2. Let D be odd. Clearly $d_x(G) = n$ or $d_x(G) = n - 1$ according as $x \in \{u_1, u_2, \ldots, u_{D-1}, w_1, w_2, \ldots, w_{p-D-n+1}\}$ or $x \in \{u_D, v_1, v_2, \ldots, v_{n-1}\}$. Thus $d_x(G) = n$ or $d_x(G) = n - 1$ for every vertex x of G.

Theorem 5.43 Let $p \geq 2$ be any integer. For $1 \leq n \leq p - 1$ there exists a connected graph G with order p and $d_x(G) = n$ or $d_x(G) = n - 1$ for every vertex x of G.

Proof. For $p = 2$, $G = K_2$ has the desired properties. For $p = 3$, $G = C_3$ or P_3 has the desired properties according as $n = 1$ or $n = 2$. For $p \geq 4$, we consider three cases.
Case 1. Let \(n = 1 \). Then \(G = C_p \) has the desired properties.

Case 2. Let \(2 \leq n \leq p - 2 \). Then \(p - n + 1 \geq 3 \). The graph \(G \) is obtained from the cycle \(C_{p-n+1} : u_1, u_2, \ldots, u_{p-n+1}, u_1 \) by adding the \(n - 1 \) new vertices \(v_1, v_2, \ldots, v_{n-1} \) and joining these to \(u_1 \). The graph \(G \) is shown in Figure 5.8.

Subcase 2.1. Let \(p - n + 1 \) be even. If \(p - n + 1 = 4 \), then \(d_G(x) = n \) or \(d_G(x) = n - 1 \) according as \(x = u_1 \) or \(x \in \{u_2, u_3, u_4, v_1, v_2, \ldots, v_{n-1}\} \). If \(p - n + 1 \geq 6 \), then \(d_G(x) = n \) or \(d_G(x) = n - 1 \) according as \(x \in \{u_1, u_2, u_3, \ldots, u_{(p-n+1)/2}, u_{(p-n+5)/2}, \ldots, u_{p-n}\} \) or \(x \in \{u_2, u_{(p-n+3)/2}, u_{p-n+1}, v_1, v_2, \ldots, v_{n-1}\} \).

Subcase 2.2. Let \(p - n + 1 \) be odd. If \(p - n + 1 = 3 \), then \(d_G(x) = n \) or \(d_G(x) = n - 1 \) according as \(x = u_1 \) or \(x \in \{u_2, u_3, u_4, v_1, v_2, \ldots, v_{n-1}\} \). If \(p - n + 1 \geq 5 \), then \(d_G(x) = n \) or \(d_G(x) = n - 1 \) according as \(x \in \{u_1, u_3, u_4, \ldots, u_{p-n}\} \) or \(x \in \{u_2, u_{p-n+1}, v_1, v_2, \ldots, v_{n-1}\} \). Thus \(d_G(x) = n \) or \(d_G(x) = n - 1 \) for every vertex \(x \) of \(G \).

Case 3. Let \(n = p - 1 \). Then \(G = K_{1,p-1} \) has the desired properties.

![Figure 5.8](image)