CHAPTER VI
PATH COVERS OF GRAPHS AND DIGRAPHS

Let G be a simple graph. $G^{(2)}$ denotes the graph got by replacing each edge of G by two parallel edges. Harary in [29] introduced the concept of path cover (or path partition) of G. For a graph G, let $E = \{\Psi : \Psi$ is a path cover of $G\}$. Clearly $E(G)$ is a path cover for any graph G. Hence $E \neq \emptyset$. Let $P_n(G)$ denote the minimum number of paths covering all the edges of G exactly once. Stanton et al. in [45], Arumugam and Suresh Suseela in [8] found $P_n(G)$ for certain classes of graphs. In 6.1 we find $P_n(G^{(2)})$ for some standard graphs. In 6.2 we find path number of some directed graphs.

6.1. PATH COVER OF $G^{(2)}$

Harary in [29] introduced the concept of path cover (or path partition) of G. The path cover of G is defined as the set of all non-trivial edge-disjoint paths covering all the edges of G exactly once. $P_n(G)$, the path number of G, is defined as follows: $P_n(G) = \min \{|\Psi| : \Psi$ is a path cover of $G\}$.

If Ψ is a collection of paths covering all the edges of G exactly twice, then Ψ is called a path double cover of G. The notion of path double cover was first introduced by J.A. Bondy. In [16], he posed the following conjecture.

Conjecture: PPDC (The Perfect Path Double Cover Conjecture)
Every simple graph has a path double cover Ψ such that each vertex of G occurs exactly twice as an end vertex of a path of Ψ.

Not before long, this conjecture was proved by H. Li and the conjecture becomes a theorem now. The theorem implies that every simple graph of order p can be path double covered by at most p paths. Obviously, the reason we need p paths in a perfect path double cover is due to the requirement that every vertex must be an end vertex of a path exactly twice. If we drop this requirement, the number of paths needed is less than p in general. In this section, we shall investigate the following number.

$$\gamma_2(G) = \min \{|\Psi| : \Psi \text{ is a path double cover of } G\}$$

For convenience, we call $\gamma_2(G)$ the path double cover (PDC) number of G. By the above observation we have $\gamma_2(G) \leq p$. As $Pn(G^{(2)}) = \gamma_2(G)$, we find $\gamma_2(G)$ for some standard graphs. Arumugam and Meena also found path double cover number for some standard graphs in [32].

6.1.1. Lemma: Let G be a graph with n pendant vertices. Then $\gamma_2(G) \geq n$.

Proof: Every pendant vertex is an end vertex of two different paths of a path double cover of G. Since there are n pendant vertices, we have $\gamma_2(G) \geq n$. ■

6.1.2. Lemma: If G is a graph with $\delta(G) \geq 2$ then $\gamma_2(G) \geq \max(\delta(G) + 1, \Delta(G))$.

Proof: One can observe that the total degree of each vertex v of G in a path double cover is $2 \deg(v)$. If v is an external vertex of a path in a path double cover Ψ of G then v is external in at least two different paths of Ψ. So we
have \(|\Psi| \geq \frac{2\text{deg}(v) - 2}{2} + 2 = \text{deg}(v) - 1 + 2 = \text{deg}(v) + 1 \geq \delta(G) + 1\). This is true for every path double cover of \(G\). Hence \(\gamma_2(G) \geq \delta(G) + 1\). Let \(u\) be a vertex of degree \(\Delta\) in \(G\). We always have \(|\Psi| \geq \frac{2\text{deg}(u)}{2} = \Delta\). Hence \(\gamma_2(G) \geq \max(\delta(G) + 1, \Delta(G))\).

6.1.3. Corollary: If \(G\) is a \(k\) - regular graph then \(\gamma_2(G) \geq k + 1\) and for all other graphs \(\gamma_2(G) \geq \Delta\).

Proof: We know that \(\Delta(G) \geq \delta(G)\) and for a regular graph \(\delta(G) = \Delta(G)\). Hence the result follows.

As \(\gamma_2(G) \leq p\) and by the above corollary we have

6.1.4. Corollary [32]: \(\gamma_2(K_p) = p\).

The following proposition is found in [32]. So we omit the proof of it.

6.1.5. Proposition: For a tree \(T\), \(\gamma_2(T) = n\), where \(n\) is the number of pendant vertices.

Observation:1: Let \(T\) be a tree with \(n\) pendant vertices. Then there exists a path double cover \(\Psi\) of \(T\) such that exactly two paths of \(\Psi\) end at a given vertex of degree \(\geq 2\) and \(|\Psi| = n + 1\).

For, in a minimum path double cover \(\Psi\) of \(T\), every vertex of degree \(\geq 2\) is not an end vertex of a path in \(\Psi\) and \(|\Psi| = n\).
In [32], Arumugam and Meena found path double cover number for unicyclic graphs (see 1.69). If $m = 2$ (m as in 6.1.6) and the two vertices on C are of degree > 3 then we prove $\gamma_2(G) = n$. They proved the theorem in [32] by induction on number of pendant vertices. However, we give our proof here for the cases $m = 0$, $m = 1$, $m = 2$ separately and for $m \geq 3$, the proof is by induction on m.

6.1.6. **Proposition:** Let G be a unicyclic graph with n pendant vertices. Let C be the unique cycle in G and let m be the number of vertices of degree greater than 2 on C. Then

$$\gamma_2(G) = \begin{cases} n + 3 - m & \text{if } m \leq 1 \text{ or } m = 2 \text{ and a vertex on } C \text{ is of degree 3, and} \\ n & \text{otherwise} \end{cases}$$

Proof: Let $V(G) = \{u_1, u_2, \ldots, u_r, v_1, v_2, \ldots, v_s\}$. Let $C = (u_1, u_2, \ldots, u_r, u_1)$

Case (i): If $m = 0$ then $G = C$ and $n = 0$. Clearly $\gamma_2(G) \geq n + 3 - m$

Let $m = 1$. In any path double cover of G all the n pendant vertices and at least two vertices in C are exterior points.

Hence $\gamma_2(G) \geq n + 2 = n + 3 - m$.

Let $m = 2$ and v be a vertex of degree 3 on C. Suppose there exists a path double cover Ψ with n paths covering all the edges of G exactly twice. Since $m = 2$, $\deg(v) = 3$ on C and $|\Psi| = n$, only two paths are through the edges of C. Then some edges of C can not be covered by the paths of Ψ. This contradiction proves $\gamma_2(G) \geq n + 1 = n + 3 - m$. For the other cases, $\gamma_2(G) \geq n$ by lemma 6.1.1.
Case (ii) Let $m = 0$, $G = C$ and $n = 0$.

$$\Psi = \{(u_1, u_2, \ldots, u_\tau), (u_\tau, u_1, \ldots, u_2), (u_2, u_1, u_\tau)\}$$

is a path double cover for C. Hence $\gamma_2(G) \leq 3 = n + 3 - m$. Let $m = 1$ and $\deg(v) \geq 3$ where v is the unique vertex of degree greater than 2 on C. Let u_1, u_2 be any two points on C different from v. Let $C_1 = <u_1, \ldots, v>$, $C_2 = <v, \ldots, u_2>$ and $C_3 = <u_2, \ldots, u_1>$ so that $C = C_1 \cup C_2 \cup C_3$. Remove all the degree two vertices on C and the resulting graph is a tree G_1. If $\deg(v) = 1$ in G_1 then there is a minimum path double cover Ψ_1 of G_1 such that there are two paths in Ψ_1 which end at v and $|\Psi_1| = n + 1$. If $\deg(v) \geq 2$ in G_1, then by observation 1, it is possible to find a path double cover Ψ_1 of G_1 such that there are two paths which end at v and $|\Psi_1| = n + 1$. So we have two paths P_1 and P_2 end at v in a path double cover Ψ_1 of G_1 and $|\Psi_1| = n + 1$. Let $\Psi = \{\Psi_1 - \{P_1, P_2\}\} \cup \{C_2 \cup C_3 \cup P_1\} \cup \{P_2 \cup C_1 \cup C_3\} \cup \{C_1 \cup C_2\}$ and $|\Psi| = |\Psi_1| - 2 + 3 = n + 2 = n + 3 - m$.

Then we have the following observation:

If $m(G) = 1$ and u_1, u_2 be any two points on C other than v then each of them can be made external in two paths of a minimum path double cover of G.

Let $m = 2$ and let at least one of the vertices u, v on C be of degree 3, say, $\deg(u) \geq 3$ and $\deg(v) = 3$ in G. Remove the tree T incident with v from G and the resulting graph is a unicyclic graph G_1 and $\deg(v) = 2$ in G_1. Clearly
Let n_1 be the number of pendant vertices of G_1. By (*) there is a minimum path double cover Ψ_1 of G_1 with $|\Psi_1| = n_1 + 2$ such that v is an external vertex for two paths Q_1 and Q_2 of Ψ_1. Now by 6.1.5, there is a minimum path double cover Ψ_2 of T such that $|\Psi_2| = n - n_1 + 1$. Since $\text{deg}(v) = 1$ in T, there are two path P_1, P_2 in Ψ_2 end at v. Let $\Psi = \{ \Psi_1 - \{Q_1, Q_2\} \} \cup \{ \Psi_2 - \{P_1, P_2\} \} \cup \{P_1 \cup Q_1\} \cup \{P_2 \cup Q_2\}$ and $|\Psi| = n_1 + n - n_1 - 1 + 2 = n + 1$. Now, if $m = 2$ and $u, v \in V(C)$ such that $\text{deg}(u) > 3$, $\text{deg}(v) > 3$ in G. Remove that trees T_1, T_2 incident at u, v respectively from G so that the resulting graph is a cycle. Let n_1 and n_2 be the number of pendant vertices of T_1 and T_2 respectively. So we have $n = n_1 + n_2$. Let $C_1 = \langle u, \ldots, v \rangle$ and $C_2 = C - C_1$. By 6.1.5., let Ψ_i be a minimum path double cover of T_i and $|\Psi_i| = n_i$ ($i = 1, 2$). So every vertex of degree ≥ 2 in T_i is an internal vertex of a path in Ψ_i ($i = 1, 2$). Let P, Q be two paths in Ψ_1 containing u as an internal vertex. Let R, S be two paths in Ψ_2 containing v as an internal vertex. Divide the paths P, Q at u so that $P = P_1 \cup P_2$ and $Q = Q_1 \cup Q_2$. Similarly, divide the paths R, S at v so that $R = R_1 \cup R_2$ and $S = S_1 \cup S_2$. Now, $\Psi = \{ \Psi_1 - \{P, Q\} \} \cup \{ \Psi_2 - \{R, S\} \} \cup \{P_1 \cup C_1 \cup R_1\} \cup \{P_2 \cup C_2 \cup R_2\} \cup \{Q_1 \cup C_1 \cup S_1\} \cup \{Q_2 \cup C_2 \cup S_2\}$ and $|\Psi| = n_1 - 2 + n_2 - 2 + 4 = n_1 + n_2 = n$. For $m \geq 3$ the proof is by induction on m. Let $m = 3$. Let u, v and w lie on C such that $\text{deg}(u), \text{deg}(v), \text{deg}(w) \geq 3$ in G. Let n_1, n_2, n_3 be the number of
pendant vertices of trees in G incident at u, v and w respectively. Clearly $n = n_1 + n_2 + n_3$. Remove the trees T_1, T_2 and T_3 incident at u, v and w respectively from G so that the resulting graph in G is a cycle. Let $C_1 = \langle u, ..., v \rangle, C_2 = \langle v, ..., w \rangle$ and $C_3 = \langle w, ..., u \rangle$ be paths on C such that $C = C_1 \cup C_2 \cup C_3$. By observation 1 or by 6.1.5, let Ψ_1, Ψ_2 and Ψ_3 be path double covers for T_1, T_2 and T_3 respectively so that $|\Psi_i| = n_i + 1$ ($1 \leq i \leq 3$) and there are paths $P_1, P_2 \in \Psi_1$ which end at u, $Q_1, Q_2 \in \Psi_2$ which end at v and $R_1, R_2 \in \Psi_3$ which end at w. Let $\Psi = \{ \Psi_1 - \{ P_1, P_2 \} \} \cup \{ \Psi_2 - \{ Q_1, Q_2 \} \} \cup \{ \Psi_3 - \{ R_1, R_2 \} \} \cup \{ P_1 \cup C_1 \cup C_2 \cup R_2 \} \cup \{ Q_1 \cup C_2 \cup C_3 \cup P_2 \} \cup \{ R_1 \cup C_3 \cup C_1 \cup Q_2 \}$ and $|\Psi| = n_1 - 1 + n_2 - 1 + n_3 - 1 + 3 = n$. Clearly Ψ is a path double cover for G. Hence the result is true when $m = 3$. Assume that the result is true for $m < k$. Let G be a unicyclic graph with $m = k > 3$. Let u be on C such that $\deg(u) \geq 3$ on G. Let n_1 be number of pendant vertices of the tree T incident at u. Remove the tree T incident at u. Let G_1 be the unicyclic graph obtained by the removal of T from G and $\deg(u) = 2$ in G_1. By observation 1 or by 6.1.5, let Ψ_1 be a path double cover of T such that $|\Psi_1| = n_1 + 1$ and there are paths P_1, P_2 in Ψ_1 end at u. Now $m(G_1) = k - 1 \geq 3$. By induction hypothesis, let Ψ_2 be a minimum path double cover of G_1 such that $|\Psi_2| = n - n_1 =$ Number of pendant vertices of G_1. Since only the pendant vertices of G_1 are end vertices of paths in Ψ_2, we have u is an internal vertex of a path, say, Q.
in \(\Psi \). Divide \(Q \) at \(u \) into two paths \(Q_1 \) and \(Q_2 \). Let \(\Psi = \{ \Psi_1 - \{ P_1, P_2 \} \} \cup \{ \Psi_2 - \{ Q \} \} \cup \{ P_1 \cup Q_1 \} \cup \{ P_2 \cup Q_2 \} \). Clearly \(\Psi \) is a path double cover of \(G \) and \(|\Psi| = n_1 - 1 + n - n_1 - 1 + 2 = n \). This completes the induction. Hence the proof.

6.1.7. Proposition: For the complete bipartite graph \(K_{m,n} \), \(\gamma_2(K_{m,n}) = n \) if \(m < n \).

Proof: Let \(V(K_{m,n}) = (A, B) \) where \(A = \{ u_0, u_1, \ldots, u_{m-1} \} \), \(B = \{ v_0, v_1, \ldots, v_{n-1} \} \). By Corollary 6.1.3. \(\gamma_2(K_{m,n}) \geq n \). Let \(P_1 = (v_1 u_1 v_{i+1} u_2 \ldots u_{m-1} v_{i+m-1} u_0 v_{i+m}) \), where \(0 \leq i \leq n-1 \) and the indices \(i \) are taken modulo \(n \). \(\Psi = \{ P_i : 0 \leq i \leq n-1 \} \) is clearly a path double cover for \(K_{m,n} \) with \(n \) paths. Hence \(\gamma_2(K_{m,n}) = n \) if \(m < n \).

The result \(\gamma_2(P_m \times P_n) = 4 \) if \(m, n \geq 3 \) was found in [32]. However we give the proof by the figures of \(P_2 \times P_5, P_5 \times P_4 \) and \(P_5 \times P_5 \) for the cases \(m = 2, m \geq 3, n \) even and \(m \geq 3, n \) odd (See Fig. 1, Fig. 2 and Fig. 3).

6.1.8. Proposition: Let \(m, n \geq 2 \). Then \(\gamma_2(P_m \times P_n) = \begin{cases} 3 & \text{if } m = 2, \text{ or } n = 2 \\ 4 & \text{otherwise} \end{cases} \)

Proof: By lemma 6.1.2., \(\gamma_2(P_m \times P_n) \geq 3 \) if \(m = 2 \) or \(n = 2 \) and \(\gamma_2(P_m \times P_n) \geq 4 \) if \(m, n \geq 3 \). The reverse inclusion follows from Fig. 1, Fig. 2 and Fig. 3.

6.1.9. Proposition: Let \(m \geq 3, n \geq 3 \). \(\gamma_2(C_m \times C_n) = 5 \) if at least one of the numbers \(m \) and \(n \) is odd.

Proof: Since \(C_m \times C_n \) is a 4 regular graph, we have, \(\gamma_2(C_m \times C_n) \geq 5 \) by
6.1.3. Since at least one of the numbers \(m \) and \(n \) is odd, \(C_m \times C_n \) can be decomposed into two Hamiltonian cycles \(C_1 \) and \(C_2 \) by theorem 1.51. Let \(v \in V(C_m \times C_n) \). Since \(\deg(v) = 4 \), there exist four vertices \(u_1, u_2, u_3 \) and \(u_4 \) adjacent with \(v \) and exactly two of them together with \(v \) are on \(C_1 \) and the other two together with \(v \) are on \(C_2 \). Without loss of generality assume that \(\langle u_1, v, u_2 \rangle \) and \(\langle u_3, v, u_4 \rangle \) lie on \(C_1 \) and \(C_2 \) respectively.

\[
\text{Fig. 4}
\]

Since \(\deg(u_4) = 4 \), there are vertices \(u_5, u_6, u_7 \) together with \(v \) are adjacent with \(u_4 \) as in Fig 4. As before assume that \(\langle u_5, u_4, u_6 \rangle \) and \(\langle v, u_4, u_7 \rangle \) lie on \(C_1 \) and \(C_2 \) respectively. Let \(C_i^{(1)}, C_i^{(2)} \) be the two copies of \(C_i \) \((i = 1, 2)\). If \(u_2u_6 \) is in \(C_1 \) then \(\{ (C_1^{(1)} - (u_2u_6)), (C_1^{(2)} - (u_4u_6)), (C_2^{(1)} - (vu_3)), (C_2^{(2)} - (vu_4)), (u_3vuu_6u_2) \} \) is a path double cover for \(C_m \times C_n \). If \(u_2u_6 \) is in \(C_2 \) then \(\{ (C_1^{(1)} - (u_1v)), (C_1^{(2)} - (u_4u_6)), (C_2^{(1)} - (vu_4)), (C_2^{(2)} - u_2u_6)), (u_1vuu_6u_2) \} \) is a path double cover for \(C_m \times C_n \). Hence \(\gamma_2(C_m \times C_n) = 5 \).

6.1.10. Proposition \(\gamma_2(C_m \times K_2) = 4, m \geq 3 \).
Proof: Consider $C_m \times K_2$ as in Fig 5. By 6.1.3, $\gamma_2(C_m \times K_2) \geq 4$. Now we prove the other part.

![Figure 5](image)

If m is even then take $P_1 = <u_0 u_1 v_1 v_2 u_2 u_3 v_3 \ldots v_{m-2} u_{m-2} u_{m-1}>$ and $P_2 = <u_0 v_0 u_1 u_2 v_2 u_3 v_3 \ldots u_{m-2} v_{m-2} v_{m-1} u_{m-1}>$.

If m is odd then take $P_1 = <u_0 u_1 v_1 v_2 u_2 u_3 v_3 \ldots u_{m-2} v_{m-2} v_{m-1} u_{m-1} >$ and $P_2 = <u_0 v_0 u_1 u_2 v_2 u_3 v_3 \ldots v_{m-2} u_{m-2} u_{m-1} v_{m-1} >$.

Let $P_3 = <u_1 u_2 \ldots u_{m-1} u_0 v_0 v_{m-1} v_{m-2} \ldots v_2 v_1>$ and $P_4 = <u_1 u_0 u_{m-1} v_{m-1} v_0 v_1>$.

Clearly, $\{P_1, P_2, P_3, P_4\}$ is a path double cover for $C_m \times K_2$ and $\gamma_2(C_m \times K_2) \leq 4$.

Hence $\gamma_2(C_m \times K_2) = 4$.

6.1.11. Theorem: If $m, n \geq 3$ then $\gamma_2(P_m \times C_n) = 4$.

Proof: By 6.1.2. $\gamma_2(P_m \times C_n) \geq 4$ and the reverse inclusion follows from Fig. 6, Fig. 7, and Fig. 8 of $P_4 \times C_3, P_5 \times C_4$ and $P_5 \times C_5$ respectively for the cases $m \geq 3, n = 3$; $m \geq 3, n$ even and $m \geq 3, n$ odd.
To prove 6.1.12 we describe the following. We view the graph $G \circ H$ as follows: Let v_1, v_2, \ldots, v_n be the vertices of G and let u_1, u_2, \ldots, u_m be the vertices of H. Then $V(G \circ H) = V(G) \times V(H) = \bigcup_{i=1}^{n} \{v_i \times V(H)\} = \bigcup_{i=1}^{n} \{v_i \times \{u_1, u_2, \ldots, u_m\}\}$.

For our convenience, we denote $v_i \times V(H)$ by $V_i = \{u_1^i, u_2^i, \ldots, u_m^i\}$, $1 \leq i \leq n$, where u_j^i stands for (v_i, u_j). We call V_i as the set of vertices of $G \circ H$ that corresponds to the vertex v_i of G. Then we may write $V(G \circ H) =$
Clearly, for each edge $v_i v_j \in E(G)$ the subgraph of $G \circ K_m$ induced by $V_i \cup V_j$ is $K_{V_i, V_j} \setminus \{\alpha_i(V_i, V_j)\}$, where $\alpha_k(V_i, V_j) = \{u_1^i u_k^j, u_2^i u_{k+1}^j, u_3^i u_{k+2}^j, \ldots, u_m^i u_{k-1}^j\}$. Clearly $\alpha_k(V_i, V_j), 1 \leq k \leq m$, is a 1-factor of K_{V_i, V_j} and $\alpha_1, \alpha_2, \ldots, \alpha_m$ give a 1-factorization of K_{V_i, V_j}.

Let $K_{r(n)}$ be the complete r-partite graph with each partite set containing n vertices. By 6.1.2. and by 1.70, it follows that unless n is odd and r is even we have $(r-1)n+1 \leq \gamma_2(K_{r(n)}) \leq (r-1)n+2$.

We give the relation $K_r \circ K_n = K_{r(n)} \setminus \bigcup_{v, v' \in E(K_r)} \{\alpha_1(V_i, V_j)\}$.

6.1.12. Theorem: For $r \geq 3$, $(K_r \circ K_{2n+1})^{(2)}$ is decomposed into $2n(r - 1)$ hamiltonian paths and n vertex disjoint cycles.

Proof: Let $V(K_r) = \{v_0, v_1, v_2, \ldots, v_{r-1}\}$ and let $V(K_{2n+1}) = \{u_0, u_1, \ldots, u_{2n}\}$.

Throughout this theorem whenever we calculate modulo s, we always use $1, 2, \ldots, s$ as residues instead of $0, 1, 2, \ldots, s-1$. Let $C = (u_1, u_2, \ldots, u_{2n+1}, u_1)$ be a cycle.

Define for $1 \leq i \leq r-1$,

$$H_i = \begin{cases} (v_o v_i v_{i+1} v_{i+2} v_{i+3} \ldots v_{i+k-1} v_{i+k} v_o) & \text{when } r = 2k \\ (v_o v_i v_{i+1} v_{i-1} v_{i+2} v_{i+3} \ldots v_{i+k+1} v_{i+k} v_o) & \text{when } r = 2k +1 \end{cases}$$

where indices are taken modulo $r - 1$ except the index 0. Clearly $\{H_1, H_2, \ldots, H_{r-1}\}$ is edge disjoint union of hamiltonian cycles covering all the edges of $K_r^{(2)}$ exactly once.
Define for $1 \leq i \leq n$, $C_i = (u_0 u_i u_{i+1} u_{i-1} u_{i+2} u_{i-2} \ldots u_{n+i-1} u_{n+i+1} u_{n+i} u_0)$

where the subscripts of u's except the index 0 are taken modulo $2n$. First we define the permutations ρ_i ($1 \leq i \leq r-1$) and β_j ($1 \leq j \leq n$) as follows:

\[
\rho_i = \begin{cases}
1 & 2 & 3 & 4 & 5 & 6 & 7 & \ldots & r-1 & r \\
0 & i & i+1 & i-1 & i+2 & i-2 & i+3 & i+1 & i+k & i+k
\end{cases} \quad \text{when } r = 2k,
\]

\[
\rho_i = \begin{cases}
1 & 2 & 3 & 4 & 5 & 6 & 7 & \ldots & r-1 & r \\
0 & i & i+1 & i-1 & i+2 & i-2 & i+3 & i+k & i+k
\end{cases} \quad \text{when } r = 2k + 1
\]

where the indices are taken modulo $r-1$ except the index 0

and $\beta_j = \begin{cases}
1 & 2 & 3 & 4 & 5 & 6 & \ldots & 2n-1 & 2n & 2n+1 \\
0 & j & j+1 & j-1 & j+2 & j-2 & \ldots & n+j-1 & n+j+1 & n+j
\end{cases} \quad \text{where the indices are taken modulo } 2n \text{ except the index 0}.

Now $H_i \circ C$ ($1 \leq i \leq r-1$) can be decomposed into hamiltonian cycles H_i' and H_i'' and the construction is as follows:

When $r = 2k$ and $1 \leq i \leq r-1$

\[
H_i' = \bigcup_{j=1}^{k-1} \{ \alpha_2(V_{\rho_i(2j)}, V_{\rho_i(2j+1)}) \cup \alpha_{2n+1}(V_{\rho_i(2j+1)}, V_{\rho_i(2j+2)}) \}
\cup \{ \alpha_2(V_{\rho_i(1)}, V_{\rho_i(2)}) \cup \alpha_{2n+1}(V_{\rho_i(1)}, V_{\rho_i(2k)}) \}
\]

\[
H_i'' = \bigcup_{j=1}^{k-1} \{ \alpha_{2n+1}(V_{\rho_i(2j)}, V_{\rho_i(2j+1)}) \cup \alpha_2(V_{\rho_i(2j+1)}, V_{\rho_i(2j+2)}) \}
\cup \{ \alpha_{2n+1}(V_{\rho_i(1)}, V_{\rho_i(2)}) \cup \alpha_2(V_{\rho_i(1)}, V_{\rho_i(2k)}) \}.
\]
When \(r = 2k+1 \) and \(1 \leq i \leq r-1 \),

\[
H_i' = \bigcup_{j=1}^{k-1} \{ \alpha_{2n+1}(V_{p_i(2j)}, V_{p_i(2j+1)}) \cup \alpha_2(V_{p_i(2j+1)}, V_{p_i(2j+2)}) \\
\cup \{ \alpha_{2n+1}(V_{p_i(2k)}, V_{p_i(2k+1)}) \cup \alpha_2(V_{p_i(1)}, V_{p_i(2)}) \} \cup \\
\alpha_{2n+1}(V_{p_i(1)}, V_{p_i(2k+1)}) \}
\]

\[
H_i'' = \bigcup_{j=1}^{k-1} \{ \alpha_2(V_{p_i(2j)}, V_{p_i(2j+1)}) \cup \alpha_{2n+1}(V_{p_i(2j+1)}, V_{p_i(2j+2)}) \} \\
\cup \{ \alpha_2(V_{p_i(2k)}, V_{p_i(2k+1)}) \cup \alpha_{2n+1}(V_{p_i(1)}, V_{p_i(2)}) \} \cup \\
\alpha_2(V_{p_i(1)}, V_{p_i(2k+1)}) \}
\]

Clearly \(H_i' \) and \(H_i'' \) (\(1 \leq i \leq r-1 \)) are edge-disjoint hamiltonian cycles covering all the edges of \((K_r \circ C)^{(2)}\) exactly once. Let \(\beta_j(C) = (u_{\beta_j(1)}, u_{\beta_j(2)}, \ldots, u_{\beta_j(2n+1)}) \). So we have \(\beta_j(C) = C_j \). Similarly, we decompose \(H_i \circ \beta_j(C), 1 \leq i \leq r-1 \) and \(1 \leq j \leq n \) into hamiltonian cycles \(H_{ij}' \) and \(H_{ij}'' \). As \(K_r \circ (C_1 \cup C_2 \cup \ldots \cup C_n) = (K_r \circ C_1) \cup (K_r \circ C_2) \cup \ldots \cup (K_r \circ C_n) \), \((K_r \circ C_{2n+1})^{(2)} \) is decomposed into \(2n(r-1) \) hamiltonian cycles (See Fig. 9 for \((K_8 \circ K_7)^{(2)}\)). For each fixed \(j(1 \leq j \leq n) \), remove an edge from each of the cycles \(H_{ij}' \) and \(H_{ij}'' \) (\(1 \leq i \leq r-1 \)) to form matchings \((u_{\beta_j(0_{2j-1})}^i, u_{\beta_j(0_{2j})}^{i+1})\) and \((u_{\beta_j(0_{2j})}^i, u_{\beta_j(0_{2j-1})}^{i+1})\) (\(1 \leq i \leq r-1 \)) respectively where \(l_k \in \{1,2,3, \ldots, 2n+1\} \) \((1 \leq k \leq 2n) \) and the superscripts are taken modulo \(r-1 \). Here we choose \(l_i \) \((1 \leq i \leq 2n) \) in such a way that the numbers in \(\{\beta_j(0_{2j-1}), \beta_j(0_{2j}) : 1 \leq j \leq n\} \) are distinct and \((\beta_j(l_{2j-1}), \beta_j(l_{2j}))\) is an edge of \(C_j (1 \leq j \leq n) \).
\[\text{For each } j \ (1 \leq j \leq n), \text{ union of the two matchings form a cycle } C_j' \text{ of length } 2r-2. \]

We are using the above theorem in the following example.

\textbf{6.1.13. Example : } \gamma_2(K_r \circ K_7) = 6r - 5, \text{ when } r \text{ is even.}

\textbf{Proof : } Let \(r = 2k \). By 6.1.4. \(\gamma_2(K_r \circ K_7) \geq 6r - 6+1 = 6r - 5 \). By 6.1.12, \((K_r \circ K_7)^{(2)}\) is decomposed into \(6(r-1)\) hamiltonian paths and 3 vertex disjoint cycles. Here we choose \(l_1 = 7, l_2 = 1, l_3 = 2, l_4 = 3, l_5 = 5 \) and \(l_6 = 6 \). Now, \(\beta_1(7) = 4, \beta_1(1) = 0, \beta_2(2) = 2, \beta_2(3) = 3, \beta_3(5) = 5 \) and \(\beta_3(6) = 1 \). Clearly \((4,0), (2,3)\) and \((5,1)\) are the edges of \(C_1, C_2 \) and \(C_3 \) respectively. So we have 3 cycles as in 6.1.12.

\[C_1' = (u_4^1 u_2^0 u_4^3 u_0^4 \ldots u_4^{r-1} u_0^1 u_4^2 u_0^3 \ldots u_0^{r-1} u_4^1) \]
\[C_2' = (u_2^1 u_3^2 u_2^3 u_3^4 \ldots u_2^{r-1} u_3^1 u_2^2 \ldots u_3^{r-1} u_2^1) \text{ and} \]
\[C_3' = (u_5^1 u_1^2 u_5^3 u_1^4 \ldots u_5^{r-1} u_1^1 u_5^2 \ldots u_1^{r-1} u_5^1) \]

Delete \((u_4^1 u_0^2), (u_2^k u_3^{k+1})\) and \((u_1^{r-1} u_5^1)\) from \(C_1', C_2', \text{ and } C_3' \) respectively. Choose \((u_4^1 u_5^0 u_3^{k+1})\) instead of \((u_4^1 u_0^2)\) from \(H_{1,1}' \). Select a path segment \((u_2^k u_0^0 u_5^1)\) instead of \((u_2^k u_3^{k+1})\) from \(H_{k,2}' \). Choose \((u_1^{r-1} u_6^0)\) instead of \((u_1^{r-1} u_5^1)\) from \(H_{r-1,3}'' \). Then we will get new paths.

\[P_1 = (u_0^2 u_4^3 u_0^4 \ldots u_0^{r-1} u_4^1 u_5^0 u_3^{k+1}) \]
\[P_2 = (u_3^{k+1} u_2^{k+2} \ldots u_3^{k-1} u_2^k u_0^0 u_5^1) \text{ and} \]
\[H_{ij}' (1 \leq i \leq 7, 1 \leq j \leq 3) \]

\[H_{ij}'' (1 \leq i \leq 7, 1 \leq j \leq 3) \]

\[K_8 \circ K_7 \]

Fig. 9

\[P_3 = (u_{5^1}u_1u_{5^3}u_{1^4}...u_{5^{r-1}}u_{1^1}u_{5^2}...u_{1^{r-1}}u_6^0) \]

\[P = P_1 \cup P_2 \cup P_3 \] is clearly a path. So we have \(\gamma_2(K_7 \circ K_7) \leq 6r - 5. \)

Hence \(\gamma_2(K_r \circ K_7) = 6r - 5. \)

6.1.14. Remark: Let \(P_n(G) \) be the minimum number of paths required to cover all the edges of \(G \) exactly once. Clearly \(\gamma_2(G) \leq 2P_n(G) \). By 1.39 and by 6.1.4, we have \(\gamma_2(K_{2n}) = 2P_n(K_{2n}) \). It is not true in general that \(P_n(G) < \gamma_2(G) \).

Let \(G = C_m \times K_2 \). By 6.1.10 and by 1.38, \(\gamma_2(G) < P_n(G) \) if \(m \geq 5 \) and \(\gamma_2(G) = P_n(G) \) if \(m = 4 \). But for a tree \(T \), \(P_n(T) \leq n-1 < n = \gamma_2(T) \).
6.2. PATH COVERS OF DIGRAPHS

In [3] path decomposition of a digraph is studied. In [4], path number of tournaments is studied. In this section we determine path number of certain standard digraphs. Throughout this chapter D stands for a weakly connected digraph without loops or multiple arcs. By a path in D we mean a directed path. In [3], it is defined that \(\text{dg}(v) = \text{od}(v) - \text{id}(v) \). If more than one digraph is under consideration we write \(\text{dg}_D(v) \) relative to D. The quantity \(x(v) = \max(0, \text{dg}(v)) \) called as the excess at \(v \) and the excess of the digraph \(D \) is defined to be \(x(D) = \sum_{v \in V(D)} x(v) \). It was also shown in [4] that for any digraph \(D, x(D) \leq \text{Pn}(D) \). Digraphs for which equality holds will be called consistent.

6.2.1. Definition : Let \(D = (V,E) \) be a digraph. Let \(\Psi \) be a collection of directed paths in \(D \) satisfying the following conditions.

(i) Every path in \(\Psi \) has atleast length one.

(ii) Every arc of \(D \) is in exactly one path of \(\Psi \)

Then \(\Psi \) is called a path cover of \(D \). Let \(G \) denote the set of all path covers of \(D \). \(E(D) \) is trivially a path cover of \(D \) and hence \(G \) is non–empty. Let \(\text{Pn}(D) = \min_{\Psi \in G} |\Psi| \). \(\text{Pn}(D) \) is called the path number of \(D \). When there is no possibility of confusion, we write \(\text{Pn} \) instead of \(\text{Pn}(D) \). A path cover \(\Psi \) of \(D \) with \(|\Psi| = \text{Pn} \) is called a minimum path cover of \(D \).
6.2.2. Example

Consider the digraph D given in the figure.

![Digraph D](image)

Let $P_1 = (2 3 7 5 6 1)$, $P_2 = (4 5 7 1 2)$, $P_3 = (1 7 3 4 8 9 6)$ and $P_4 = (9 8)$.

Then $\Psi = \{ P_1, P_2, P_3, P_4 \}$ is a minimum path cover of D and $P_n(D) = 4$.

Let Ψ be a path cover of a directed graph D. Let $i(v, \Psi)$ denote the number of paths in Ψ having v as an internal vertex and let $i_\Psi = \max_{v \in V(D)} i(v, \Psi)$.

6.2.3. Theorem: $P_n(D) = \frac{1}{2} \sum_{v \in V(D)} |dg(v)| + \sum_{v \in V(D)} \min(id(v), od(v)) - i$, where $i = \max i_\Psi$ and the maximum is taken over all path covers Ψ of D.

Proof: $2|\Psi| = \text{The number of external vertices of directed paths in } \Psi$

\[
= \sum_{v \in V(D)} |dg(v)| + \sum_{v \in V(D)} 2 \left(\min(id(v), od(v)) - i(v, \Psi) \right)
\]

\[
|\Psi| = \frac{1}{2} \sum_{v \in V(D)} |dg(v)| + \sum_{v \in V(D)} \min(id(v), od(v)) - \sum_{v \in V(D)} i(v, \Psi)
\]
\[= \frac{1}{2} \sum_{v \in V(D)} |\text{dg}(v)| + \sum_{v \in V(D)} \min(\text{id}(v), \text{od}(v)) - i \]

Hence \(Pn(D) = \frac{1}{2} \sum_{v \in V(D)} |\text{dg}(v)| + \sum_{v \in V(D)} \min(\text{id}(v), \text{od}(v)) - i \)

6.2.4. **Corollary**: For any digraph \(D \), \(Pn(D) \geq \frac{1}{2} \sum_{v \in V(D)} |\text{dg}(v)| \). Moreover the following statements are equivalent.

(i) \(Pn(D) = \frac{1}{2} \sum_{v \in V(D)} |\text{dg}(v)| \)

(ii) There exists a path cover \(\Psi \) of \(D \) for which \(i(v, \Psi) = \min(\text{id}(v), \text{od}(v)) \) for every vertex \(v \) of \(D \).

6.2.5. **Corollary** [8]: For a directed tree \(T \), \(Pn(T) = \frac{1}{2} \sum_{v \in V(T)} |\text{dg}(v)| \).

Proof: Clearly \(T \) has a path cover \(\Psi \) with \(i(v, \Psi) = \min(\text{id}(v), \text{od}(v)) \) for every vertex \(v \) in \(T \) and hence \(Pn(T) = \frac{1}{2} \sum_{v \in V(T)} |\text{dg}(v)| \).

6.2.6. **Corollary**: If \(G \) is a 3–regular graph then there exists an orientation \(D \) of \(G \) such that \(Pn(D) = \frac{1}{2} \sum_{v \in V(D)} |\text{dg}(v)| \).

Proof: By 1.38 and 1.42, there exists a path cover \(\Psi \) of \(G \) in which every vertex is an internal vertex of exactly one path in \(\Psi \) and \(Pn(G) = \frac{p}{2} \). Let \(D \) be the digraph obtained by orienting the edges of \(G \) in such a way that each path in \(\Psi \) is a directed path. Then \(\text{id}(v) = 1, \text{od}(v) = 2 \) or \(\text{id}(v) = 2, \text{od}(v) = 1 \) for

147
every vertex \(v \) of \(D \). So we have, \(i(v, \Psi) = \min(\text{id}(v), \text{od}(v)) \) for every vertex \(v \) of \(D \). Hence by 6.2.4., \(P_n(D) = \frac{1}{2} \sum_{v \in V(D)} |d_{g_D}(v)| \).

6.2.7. Corollary: Let \(D = (V, E) \) be an isograph. Then \(P_n(D) = q - i \).

Proof: Since \(\text{od}(v) = \text{id}(v) \) for every \(v \in V(D) \) (see 1.78) and also by 6.2.3 we have, \(P_n(D) = \sum_{v \in V(D)} \text{od}(v) - i = q - i \).

6.2.8. Remark: \(P_n(D) = \frac{1}{2} \sum |d_{g(u)}| + \sum \min(\text{id}(u), \text{od}(u)) - i \)

\[= \frac{1}{2} \sum [\max(d_{g(u)}, 0) - \min(d_{g(u)}, 0)] + \sum \min(\text{id}(u), \text{od}(u)) - i \]

\[= \frac{1}{2} x(D) - \frac{1}{2} \sum \min(d_{g(u)}, 0) + \sum \min(\text{id}(u), \text{od}(u)) - i \]

\[= \frac{1}{2} x(D) + \sum [\min(\text{id}(u), \text{od}(u)) - \min(d_{g(u)}, 0)] + \frac{1}{2} \sum \min(d_{g(u)}, 0) - i \]

\(P_n(D) = \frac{x(D)}{2} + \sum \text{id}(u) + \frac{1}{2} \sum \min(d_{g(u)}, 0) - i \)

\[= \frac{x(D)}{2} + q + \frac{1}{2} \sum \min(d_{g(u)}, 0) - i \]

6.2.9. Theorem: If \(D \) is consistent then \(P_n(D) = 2(q - i) + \sum \min(d_{g(u)}, 0) \).

Proof: If \(D \) is consistent then \(P_n(D) = x(D) \). The result follows from the above remark.

The following two lemmas are useful in theorem 6.2.13.
6.2.10. **Lemma:** Let D be a digraph and $P_n(D) = \frac{1}{2} \sum_{u \in V(D)} |dg(u)|$. Let vw be an arc of D. Let D' be a digraph obtained by replacing vw by a directed path P joining v and w. Then $P_n(D) = P_n(D')$.

Proof: Let Ψ be a minimum path cover for D. Let Q be a path of Ψ containing the arc vw. Let P_1 be a path obtained from Q by replacing the arc vw by the directed path P. Then $\{ \Psi - \{Q\} \} \cup \{ P_1 \}$ is a path cover for D'.

Hence $P_n(D') \leq P_n(D)$. Clearly $P_n(D') \geq \frac{1}{2} \sum_{u \in V(D')} |dg_{D'}(u)| = \frac{1}{2} \sum_{u \in V(D)} |dg_D(u)| = P_n(D)$.

6.2.11. **Lemma:** Let D be a digraph. Let $vw \notin E(D)$ with $dg_D(v) \geq 0$, $dg_D(w) \leq 0$ and $P_n(D) = \frac{1}{2} \sum_{u \in V(D)} |dg_D(u)|$. Let D' be a graph obtained from D by adding the arc vw. Then $P_n(D') = \frac{1}{2} \sum_{u \in V(D')} |dg_{D'}(u)| = P_n(D) + 1$.

Proof: Let Ψ be a minimum path cover for D. Let $\Psi_1 = \Psi \cup \{ vw \}$ be a path cover for D'. Hence $P_n(D') \leq |\Psi| + 1 = P_n(D) + 1$. As $P_n(D') \geq \frac{1}{2} \sum_{u \in V(D')} |dg_{D'}(u)|$ and $|dg_D(v)| + |dg_D'(w)| = |dg_D(v)| + |dg_D(w)| + 2$. We have $P_n(D') \geq \frac{1}{2} \sum_{u \in V(D')} |dg_{D'}(u)| = \frac{1}{2} \left[\sum_{u \in V(D)} |dg_D(u)| + 2 \right] = P_n(D) + 1$. Hence the result.
6.2.12. **Theorem**: Let D be a digraph. Let (vw) be an arc of D with $\text{dg}_D(v) \leq 0$, $\text{dg}_D(w) \geq 0$. Let H be the digraph obtained from D by reversing the arc (vw). Then D is consistent if and only if H is consistent and $P_n(H) = P_n(D) + 2$.

Proof: Let H be consistent and $P_n(H) = 2 + P_n(D)$. We have $\text{dg}_H(v) = \text{dg}_D(v) - 2$, $\text{dg}_H(w) = \text{dg}_D(w) + 2$ and $\text{dg}_H(u) = \text{dg}_D(u)$ for all other vertices. As $\text{dg}_D(v) \leq 0$, $\text{dg}_H(v) \leq 0$, $\text{dg}_D(w) \geq 0$ and $\text{dg}_H(w) \geq 0$ we have, $x(H) = x(D) + 2$. As H is consistent, $P_n(D) = P_n(H) - 2 = x(H) - 2 = x(D)$. Hence D is consistent. The converse follows from 1.81.

6.2.13. **Theorem**: Let D be a unicyclic graph with unique directed cycle C where the directed cycle is obtained from a cycle by orienting the cycle clockwise. Let m denote the number of vertices of either out degree > 1 or in degree > 1 on C. Then

$$P_n(D) = \begin{cases}
2 & \text{if } m = 0 \\
\frac{1}{2} \sum_{u \in V(D)} |\text{dg}_D(u)| + 1 & \text{if } m = 1 \\
\frac{1}{2} \sum_{u \in V(D)} |\text{dg}_D(u)| & \text{if } m \geq 2
\end{cases}$$

Proof: Case (i): If $m = 0$ then $D = C$ is a directed cycle and $P_n(D) = 2$.

Case (ii): Let $m = 1$. Let v be the vertex on C for which $\text{id}(v) > 1$ or $\text{od}(v) > 1$. In any minimum path cover Ψ of D atleast one vertex on C other than v is not internal in any path of Ψ and hence $\sum_{v \in V(D)} (\min(\text{id}(v), \text{od}(v)) - i) \geq 1$. Hence

$$P_n(D) \geq \frac{1}{2} \sum_{u \in V(D)} |\text{dg}_D(u)| + 1.$$

Let (wv) be a path on C.

150
Subcase a: Let $\text{dg}_D(v) > 0$. Let $D_1 = D - vs$ be a tree. Since $\text{dg}_D(v) > 0$, $\text{dg}_D(s) = 0$, we have $|\text{dg}_D(v)| = |\text{dg}_{D_1}(v)| + 1$ and $|\text{dg}_D(s)| = |\text{dg}_{D_1}(s)| - 1$. Let Ψ' be a minimum path cover for D_1. Then $\Psi = \Psi' \cup \{(vs)\}$ is a path cover for D. Hence $P_n(D) \leq |\Psi| = P_n(D_1) + 1$. Since D_1 is a tree we have, $P_n(D_1) = \frac{1}{2} \sum_{u \in V(D_1)} |\text{dg}_{D_1}(u)|$.

Now, $P_n(D) \leq P_n(D_1) + 1 = \frac{1}{2} \sum_{u \in V(D_1)} |\text{dg}_{D_1}(u)| + 1 = \frac{1}{2} \sum_{u \in V(D)} |\text{dg}_D(u)| + 1$. Hence $P_n(D) = \frac{1}{2} \sum_{u \in V(D)} |\text{dg}_D(u)| + 1$.

Subcase b: Let $\text{dg}_D(v) < 0$. Let $D_1 = D - wv$ be a tree. Since $\text{dg}_D(v) < 0$, $|\text{dg}_D(v)| = |\text{dg}_{D_1}(v)| + 1$ and $|\text{dg}_D(w)| = |\text{dg}_{D_1}(w)| - 1$. Let Ψ' be a minimum path cover for D_1. Then $\Psi = \Psi' \cup \{(wv)\}$ is a path cover for D. Hence $P_n(D) \leq |\Psi| = P_n(D_1) + 1$. Since D_1 is a tree, $P_n(D_1) = \frac{1}{2} \sum_{u \in V(D_1)} |\text{dg}_{D_1}(u)|$. Hence $P_n(D) \leq \frac{1}{2} \sum_{u \in V(D_1)} |\text{dg}_{D_1}(u)| + 1 = \frac{1}{2} \sum_{u \in V(D)} |\text{dg}_D(u)| + 1$.

Subcase c: Let $\text{dg}_D(v) = 0$. Clearly, $\text{od}_D(v) \geq 2$ and $\text{id}_D(v) \geq 2$. Let $D_1 = D - wv$. Note that $|\text{dg}_D(v)| = |\text{dg}_{D_1}(v)| - 1$ and $|\text{dg}_D(w)| = |\text{dg}_{D_1}(w)| - 1$. Let $P = C - wv$. Let Ψ' be a minimum path cover for D_1. Then either $P \in \Psi'$ or there exists a path $P_1 \in \Psi'$ contains P.

Let $P_1 \in \Psi'$. Since $\text{dg}_{D_1}(v) > 0$ there exists a path $Q \in \Psi''$ which starts at v and contains no arc of C. Define $Q' = Q \cup \{(wv)\}$. Now $\Psi = \{\Psi'' - Q\} \cup \{Q'\}$ is a path cover for D. Hence $P_n(D) \leq |\Psi| = |\Psi'| = P_n(D_1) =$ 151
\[
\frac{1}{2} \sum_{u \in V(D)} |dg_{D_1}(u)| = \frac{1}{2} \left(\sum_{u \in V(D)} |dg_D(u)| + 2 \right) = \frac{1}{2} \sum_{u \in V(D)} |dg_D(u)| + 1. \text{ Hence } P_n(D) = \\
\frac{1}{2} \sum_{u \in V(D)} |dg_D(u)| + 1.
\]

Let \(P \in \Psi' \). There exists a path \(P_2 \in \Psi' \) contains \(u \) as an internal vertex and containing no arc of \(C \), as \(od_{D_1}(v) \geq 2 \) and \(id_{D_1}(v) \geq 1 \). Divide \(P_2 \) into two paths \(P_2' \) and \(P_2'' \) such that \(P_2' \) ends at \(v \) and \(P_2'' \) starts at \(v \). Let \(P_3 = P_2' \cup P \) and \(P_4 = P_2'' \cup \{(uv)\} \). Now \(\Psi' = \Psi - \{ P, P_2 \} \cup \{ P_3, P_4 \} \). \(P_n(D) \leq |\Psi| = |\Psi'| = \frac{1}{2} \sum_{u \in V(D_1)} |dg_{D_1}(u)| = \frac{1}{2} \left(\sum_{u \in V(D)} |dg_D(u)| + 2 \right) = \frac{1}{2} \sum_{u \in V(D)} |dg_D(u)| + 1.
\]

Case iii: Let \(m \geq 2 \). Let \(v, w \in V(C) \) such that every vertex on the directed path from \(v \) to \(w \) of \(C \) has in degree one and out degree one and \(id(v) > 1 \) or \(od(v) > 1 \) and \(id(w) > 1 \) or \(od(w) > 1 \). With out loss of generality assume that \(vw \) is an arc of \(D \), as we are going to prove that \(P_n(D) = \sum_{u \in V(D)} |dg_D(u)| \) and by 6.2.10, \(P_n(D) \) is not altered if we replace \(vw \) by a directed path joining \(v \) and \(w \). Clearly \(P_n(D) \geq \frac{1}{2} \sum_{u \in V(D)} |dg_D(u)| \). Let \(D_1 = D - vw \). By 6.2.5., \(P_n(D_1) = \\
\frac{1}{2} \sum_{u \in V(D_1)} |dg_{D_1}(u)| \).

Subcase a: Let \(dg_D(v) > 0 \) and \(dg_D(w) < 0 \). Then \(dg_{D_1}(v) \geq 0 \) and \(dg_{D_1}(w) \leq 0 \). By 6.2.11, \(P_n(D) = \frac{1}{2} \sum_{u \in V(D)} |dg_D(u)| \).
Subcase b: Let $dg_D(v) \leq 0$ and $dg_D(w) \geq 0$. There exists a minimum path cover Ψ of D_1 such that there is a path P_1 which ends at v and there is a path P_2 which starts at w and both contain no arc of C. Let $P = P_1 \cup (vw) \cup P_2$. Clearly $\Psi_1 = \{\Psi - \{P_1, P_2\}\} \cup \{P\}$ is a path cover of D. Moreover, $|dg_D(v)| = |dg_{D_1}(v)| - 1$ and $|dg_D(w)| = |dg_{D_1}(w)| - 1$. Now $P_n(D) \leq |\Psi_1| = |\Psi| - 1 = P_n(D_1) - 1 = \frac{1}{2} \sum_{u \in V(D_1)} |dg_{D_1}(u)| - 1 = \frac{1}{2} (\sum_{u \in V(D_1)} |dg_{D_1}(u)| - 2) = \frac{1}{2} \sum_{u \in V(D)} |dg_D(u)|$.

Hence $P_n(D) = \frac{1}{2} \sum_{u \in V(D)} |dg_D(u)|$.

Subcase c: Let $dg_D(v) \leq 0$ and $dg_D(w) < 0$. It is possible to find a minimum path cover Ψ' of D_1 such that Ψ' contains a path Q which ends at v and does not contain any arc of C. Let $\Psi = \{\Psi' - Q\} \cup \{Q \cup (vw)\}$. Clearly Ψ is a path cover for D. Also $|dg_D(v)| = |dg_{D_1}(v)| - 1$ and $|dg_D(w)| = |dg_{D_1}(w)| + 1$.

$P_n(D) \leq |\Psi| = |\Psi'| = \frac{1}{2} \sum_{u \in V(D_1)} |dg_{D_1}(u)| = \frac{1}{2} \sum_{u \in V(D)} |dg_D(u)|$. Hence $P_n(D) = \frac{1}{2} \sum_{u \in V(D)} |dg_D(u)|$.

Subcase d: Let $dg_D(v) > 0$ and $dg_D(w) \geq 0$. Then $dg_{D_1}(v) \geq 0$ and $dg_{D_1}(w) > 0$. There exists a minimum path cover Ψ' of D_1 such that Ψ' contains a path Q which starts at w and contains no arc of C. Let $P = (vw) \cup Q$. Clearly
\[\Psi = \{ \Psi' - \{ Q \} \} \cup \{ P \} \] is a path cover for D. Note that \(|dg_D(v)| = |dg_{D_1}(v)| + 1\) and \(|dg_D(w)| = |dg_{D_1}(w)| - 1\). \(Pn(D) \leq |\Psi| = |\Psi'| = \frac{1}{2} \sum_{u \in V(D)} |dg_{D_1}(u)| = \frac{1}{2} \sum_{u \in V(D)} |dg_D(u)|.\) Hence \(Pn(D) = \frac{1}{2} \sum_{u \in V(D)} |dg_D(u)|.\)

6.2.14. Theorem: Let D be an anti-symmetric digraph. Then \(Pn(D) = |E(D)|\) if and only if \(id(v) = 0\) or \(od(v) = 0\) for all vertices \(v\) of D.

Proof: Let \(id(v) = 0\) or \(od(v) = 0\) for all vertices \(v\) of D. \(Pn(D) \geq \frac{1}{2} \sum |dg(v)| = \frac{1}{2} \sum (od(v) + id(v)) = q(D).\) Always \(Pn(D) \leq q.\) Hence \(Pn(D) = q.\) Conversely, let \(Pn(D) = q.\) Suppose there is a vertex \(v\) such that \(id(v) \geq 1\) and \(od(v) \geq 1\). Then there exists two different vertices \(u\) and \(w\) of D such that \(uv, vw \in E(D)\). Let \(P = (u \ v \ w).\) Now \(\Psi = \{ P \} \cup \{ E(G) - E(P) \}\) is a path cover of D and \(|\Psi| < q\) which is a contradiction.

6.2.15. Theorem: For any graph G, there exists an orientation D of G such that \(Pn(D) = Pn(G)\).

Proof: Let \(\Psi\) be a minimum path cover of G. Let D be the digraph obtained by orienting the edges of G in such a way that each path in \(\Psi\) is a directed path. Then \(Pn(D) = Pn(G).\)
If $P = (u_1, u_2, \ldots, u_n)$ then we define the directed paths $\bar{P} = (u_1, u_2, \ldots, u_n)$ and $\bar{P} = (u_n, \ldots, u_2, u_1)$.

6.2.16. Theorem Let G be a (p,q) graph. Let D be the symmetric digraph obtained from G by replacing each edge of G by a symmetric pair of arcs. Then $P_n(D) \leq 2P_n(G)$

Proof: Let $P_n(G) = m$. Let $\Psi = \{P_1, P_2, P_3, \ldots, P_m\}$ be a minimum path cover of G. We orient the paths P_i $(1 \leq i \leq m)$ in two different directions so that \bar{P}_i, \bar{P}_i $(1 \leq i \leq m)$ are directed paths in D. Now $\bar{\Psi} = \{\bar{P}_i, \bar{P}_i : 1 \leq i \leq m\}$ is a path cover for D. Hence $P_n(D) \leq 2P_n(G)$.

6.2.17 Corollary: Let D be a complete symmetric digraph on $2n$ vertices with $n \geq 2$. Then $P_n(D) = 2n$.

Proof: By 6.2.16 and by 1.39 it follows that $P_n(D) \leq 2n$. Also $P_n(D) \geq \frac{|E(D)|}{2n-1}$

$$= \frac{2n(2n-1)}{2n-1} = 2n.$$ Therefore, $P_n(D) = 2n$.