LIST OF TABLES

4.1 Calculated values of various fields on MTJ . 63

5.1 Threshold switching currents of various fields and torques on MTJ 76
LIST OF FIGURES

1.1 Growth of MR in storage industry .. 2
1.2 Principle of writing data ... 3
1.3 Structure of a magnetic cell ... 4
1.4 Reading data (a) CIP (b) CPP .. 4
1.5 Magnetization (a) Parallel (b) Anti-parallel 5
1.6 (a) A nanomagnet (b) Principle of writing data 7
1.7 MRAM with external field for writing data 8
2.1 M-H curves ... 14
2.2 Magnetic ordering in different materials 15
2.3 Exchange coupling in transition metals 17
2.4 Hysteresis loop .. 18
2.5 Origin of magnetic moment .. 20
2.6 Spin occupancy in 3d orbital .. 21
2.7 Magnetic fields of lines (a) in a dipole (b) in a coil 22
3.1 Energy levels and wave functions of a free electron in a line of length L 26
3.2 Energy versus wave vector of free electron 27
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3</td>
<td>DOS (a) without applied field and (b) with applied field.</td>
</tr>
<tr>
<td>3.4</td>
<td>Potential barrier (a) Rectangular (b) Irregular</td>
</tr>
<tr>
<td>3.5</td>
<td>Turning point</td>
</tr>
<tr>
<td>3.6</td>
<td>M/I/M structure with a trapezoidal barrier</td>
</tr>
<tr>
<td>3.7</td>
<td>Energy-band diagram of MTJ</td>
</tr>
<tr>
<td>3.8</td>
<td>Spin dependent tunneling when FM(_1) and FM(_2) are parallel.</td>
</tr>
<tr>
<td>3.9</td>
<td>Spin dependent tunneling when FM(_1) and FM(_2) are antiparallel.</td>
</tr>
<tr>
<td>3.10</td>
<td>Energy band diagram for a M/I/M with external bias</td>
</tr>
<tr>
<td>4.1</td>
<td>Demagnetization field of an ellipsoid</td>
</tr>
<tr>
<td>4.2</td>
<td>Demagnetization fields in standard structures</td>
</tr>
<tr>
<td>4.3</td>
<td>Circular disc placed in y – z plane</td>
</tr>
<tr>
<td>4.4</td>
<td>Dipolar field due to a magnetic dipole</td>
</tr>
<tr>
<td>4.5</td>
<td>Top view of FLs in an array</td>
</tr>
<tr>
<td>4.6</td>
<td>Coupling between two MTJs (i) and (j)</td>
</tr>
<tr>
<td>4.7</td>
<td>Array that requires the maximum and minimum switching currents</td>
</tr>
<tr>
<td>4.8</td>
<td>Magnetostatic field from PL to FL</td>
</tr>
<tr>
<td>4.9</td>
<td>Exchange field between PL and FL</td>
</tr>
<tr>
<td>4.10</td>
<td>Variation of exchange energy with barrier height</td>
</tr>
<tr>
<td>4.11</td>
<td>Variation of exchange constant with barrier thickness</td>
</tr>
<tr>
<td>4.12</td>
<td>Spin torque experienced by FL electrons</td>
</tr>
</tbody>
</table>
4.13 Variation of τ_s and H_{ex} for varying barrier thickness .. 58
4.14 Oersted field in a circular disc ... 59
4.15 FL with infinitesimal magnetizations on its surface .. 60
4.16 Single domain approximation .. 62
4.17 Pairs of micromagnetic elements approximated as a single dipole 62

5.1 Trajectory of a magnetic moment ... 66
5.2 Directions of the precession and damping torques ... 67
5.3 Directions of the precession, damping and spin torques 68
5.4 Equivalent circuit of a single nanomagnet .. 70
5.5 Precession of a magnetic moment ... 71
5.6 Trajectory of a magnetic moment switching from $+z$ to $-z$ 71
5.7 M_x, M_y and M_z of a magnetic moment .. 71
5.8 Phase difference of x and y component of magnetic moment 72
5.9 Variation of the parameters ϕ and θ with variation in time 73
5.10 Variation of switching threshold V_{app} for varying barrier thickness 74
5.11 V_{thresh} variations with barrier thickness for MgO and Al$_2$O$_3$ barriers 78
5.12 A basic non-volatile STT gate ... 79
5.13 Switching of a non-volatile STT logic gate .. 80
5.14 A non-volatile 2:4 decoder circuit ... 81
5.15 Output of a 2:4 decoder for an input $AB=11$... 82
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTJ</td>
<td>Magnetic tunnel junction</td>
</tr>
<tr>
<td>MRAM</td>
<td>Magnetic random access memory</td>
</tr>
<tr>
<td>STT</td>
<td>Spin transfer torque</td>
</tr>
<tr>
<td>STTRAM</td>
<td>STT random access memory</td>
</tr>
<tr>
<td>FL</td>
<td>Free layer</td>
</tr>
<tr>
<td>PL</td>
<td>Pinned layer</td>
</tr>
<tr>
<td>MR</td>
<td>Magnetoresistance</td>
</tr>
<tr>
<td>AMR</td>
<td>Anisotropic magnetoresistance</td>
</tr>
<tr>
<td>TMR</td>
<td>Tunneling magnetoresistance</td>
</tr>
<tr>
<td>GMR</td>
<td>Giant magnetoresistance</td>
</tr>
<tr>
<td>M</td>
<td>Metal</td>
</tr>
<tr>
<td>FM</td>
<td>Ferromagnet</td>
</tr>
<tr>
<td>NM</td>
<td>Non-magnetic metal</td>
</tr>
<tr>
<td>I</td>
<td>Insulator</td>
</tr>
<tr>
<td>CIP</td>
<td>Current in plane</td>
</tr>
<tr>
<td>CPP</td>
<td>Current perpendicular to plane</td>
</tr>
<tr>
<td>SWE</td>
<td>Schödinger’s wave equation</td>
</tr>
<tr>
<td>DOS</td>
<td>Density of states</td>
</tr>
<tr>
<td>CMOS</td>
<td>Complementary metal oxide semiconductor</td>
</tr>
<tr>
<td>LLGE</td>
<td>Landau Lifshitz Gilbert equation</td>
</tr>
<tr>
<td>SPICE</td>
<td>Simulation program with integrated circuit emphasis</td>
</tr>
<tr>
<td>AFM</td>
<td>Antiferromagnet</td>
</tr>
<tr>
<td>BCC</td>
<td>Body centered cube</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>PS</td>
<td>Parallel state</td>
</tr>
<tr>
<td>APS</td>
<td>Antiparallel state</td>
</tr>
<tr>
<td>NV</td>
<td>Non-volatile</td>
</tr>
<tr>
<td>S matrix</td>
<td>Scattering matrix</td>
</tr>
<tr>
<td>T matrix</td>
<td>Transfer matrix</td>
</tr>
<tr>
<td>det</td>
<td>Determinant</td>
</tr>
<tr>
<td>USF</td>
<td>Unit step function</td>
</tr>
<tr>
<td>Notation</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>R_P</td>
<td>Resistance when FM$_1$ and FM$_2$ are parallel</td>
</tr>
<tr>
<td>R_{AP}</td>
<td>Resistance when FM$_1$ and FM$_2$ are antiparallel</td>
</tr>
<tr>
<td>H_{app}</td>
<td>Applied magnetic field</td>
</tr>
<tr>
<td>μ_0</td>
<td>Permeability of free space</td>
</tr>
<tr>
<td>μ</td>
<td>Relative permeability</td>
</tr>
<tr>
<td>e</td>
<td>Charge of an electron</td>
</tr>
<tr>
<td>m_e</td>
<td>Mass of an electron</td>
</tr>
<tr>
<td>h</td>
<td>Planck’s constant</td>
</tr>
<tr>
<td>\hbar</td>
<td>Reduced Planck’s constant ($h/2\pi$)</td>
</tr>
<tr>
<td>K</td>
<td>Boltzmann’s constant</td>
</tr>
<tr>
<td>μ_B</td>
<td>Bohr magneton</td>
</tr>
<tr>
<td>m</td>
<td>Magnetic moment</td>
</tr>
<tr>
<td>χ</td>
<td>Susceptibility</td>
</tr>
<tr>
<td>g</td>
<td>Landé g-factor</td>
</tr>
<tr>
<td>l</td>
<td>Orbital quantum number</td>
</tr>
<tr>
<td>m_l</td>
<td>Orbital moment</td>
</tr>
<tr>
<td>a</td>
<td>Distance from the nucleus to the electron</td>
</tr>
<tr>
<td>s</td>
<td>Spin quantum number</td>
</tr>
<tr>
<td>m_s</td>
<td>Spin moment</td>
</tr>
<tr>
<td>\mathcal{E}_F</td>
<td>Fermi energy</td>
</tr>
<tr>
<td>\mathcal{E}</td>
<td>Energy of particle</td>
</tr>
<tr>
<td>Δ</td>
<td>Spin splitting energy</td>
</tr>
<tr>
<td>\mathcal{H}</td>
<td>Hamiltonian</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>κ</td>
<td>Decay constant</td>
</tr>
<tr>
<td>k</td>
<td>Propagation constant</td>
</tr>
<tr>
<td>M_S</td>
<td>Saturation magnetization</td>
</tr>
<tr>
<td>H_{ex}</td>
<td>Exchange field</td>
</tr>
<tr>
<td>M</td>
<td>Magnetization of FL</td>
</tr>
<tr>
<td>M_{PL}</td>
<td>Magnetization of PL</td>
</tr>
<tr>
<td>H_d</td>
<td>Demagnetization field</td>
</tr>
<tr>
<td>\mathcal{E}_{ex}</td>
<td>Exchange energy</td>
</tr>
<tr>
<td>H_{PL}</td>
<td>Magnetostatic field due to PL</td>
</tr>
<tr>
<td>H_{MN}</td>
<td>Magnetostatic field due to neighbours</td>
</tr>
<tr>
<td>w</td>
<td>Width of the FL</td>
</tr>
<tr>
<td>U_0</td>
<td>Barrier height</td>
</tr>
<tr>
<td>τ_s</td>
<td>Spin torque</td>
</tr>
<tr>
<td>τ_A</td>
<td>Ampere torque</td>
</tr>
<tr>
<td>$V^{(j)}$</td>
<td>Volume of j^{th} FL</td>
</tr>
<tr>
<td>C</td>
<td>Coupling matrix</td>
</tr>
<tr>
<td>N</td>
<td>Demagnetization tensor</td>
</tr>
<tr>
<td>\tilde{T}</td>
<td>Transition probability</td>
</tr>
<tr>
<td>T</td>
<td>Tunneling probability</td>
</tr>
<tr>
<td>r_{ij}</td>
<td>Distance between MTJs i and j</td>
</tr>
<tr>
<td>R</td>
<td>Radius of the MTJ</td>
</tr>
<tr>
<td>A</td>
<td>Area of cross section of MTJ</td>
</tr>
<tr>
<td>J</td>
<td>Current density</td>
</tr>
<tr>
<td>V_{app}</td>
<td>Applied voltage</td>
</tr>
<tr>
<td>R_T</td>
<td>Tunnel resistance</td>
</tr>
<tr>
<td>V_{thresh}</td>
<td>Threshold voltage</td>
</tr>
<tr>
<td>α</td>
<td>Damping constant</td>
</tr>
<tr>
<td>γ</td>
<td>Gyrometric ratio</td>
</tr>
<tr>
<td>Symbol</td>
<td>Definition</td>
</tr>
<tr>
<td>--------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>η</td>
<td>Spin transfer efficiency</td>
</tr>
<tr>
<td>D_x</td>
<td>Density of states</td>
</tr>
<tr>
<td>σ</td>
<td>Spin of electron (↑ / ↓)</td>
</tr>
</tbody>
</table>