ACKNOWLEDGEMENTS

I am very much grateful to my guide Dr. C. Muthamizhchelvan for his continual moral support and encouraging words which strengthened my morale a lot many times and helped me in taking a deterministic approach in reaching my goal. My sincere thanks to the SRM management for having given me the opportunity to do my research and one of the course works at IIT Madras, Chennai, and encouraging me throughout.

It is an honour to work under the guidance of Prof. Anil Prabhakar. I am highly indebted to him for first having accepted to guide me in my research. He led me into the fields of electromagnetism, spin, quantum mechanics and magnetoelectronics. I thank him a lot for having made an immobile ion to spin around, up and down and finally get aligned into submission of this thesis. I thank IIT Madras, Chennai, for allowing me to do most of my work in their premises. I owe my gratitude to Prof. Nandhitha Dasgupta for her course at IIT Madras. I also thank Prof. S. Balaji and Prof. Shanthi Bhattacharya for their support at IIT Madras.

I take this opportunity to thank Dr. J. Raja who initialised my journey into nano, Prof. V. Murugan who gave me an idea of quantum mechanics and Prof. S. Jayashri for having given her whole hearted support during the initial phase.

My special thanks to my good friend, Pradeep for the discussions, support and timely advices throughout at IIT Madras. I am thankful to Khansa, Chellams, Thevan, G. Lakshminarayan, V. Lakshminarayan, Vishnu, Ramkumar, Raghuvaran, Priya, Jayavel, Albena and all others at the FILL lab, IIT and Pazhamalai at SRMU for helping in many ways.

I thank Dr.S.Malarvizhi, Dr.R.Kumar, Prof.V.Natarajan, Saraswathi, Shanthi, ArunaPriya,
Vasanthi, Manohari ma’am, Ramesh and all my colleagues and friends for having supported me in my crucial periods. I owe a very special thanks to Subhashish, Tarun and Sriram.

I am grateful to Prof. G. Csaba for his assistance through mail in developing the SPICE model and Prof. J. C. Slonczewski for the valuable discussions he had with Prof. Anil Prabakar in analyzing barrier thickness variations.

I am highly indebted to my beloved and caring children Brindha and Prashanth and my dear husband Mohan for having been a great support all these years and shed love and affection. I owe a special gratitude to my beloved parents.

M. Malathi

Place: Chennai
Date: 8th July 2009
ABSTRACT

Magnetism or electron spin has always been important for information storage. Magnetic random access memory, using magnetic tunnel junctions (MTJ), has many advantages like non-volatility, unlimited write endurance and zero data retention power. The MTJ is a heterostructure consisting of two ferromagnetic layers namely, the pinned layer (PL) and the free layer (FL), with an insulating spacer between them.

In a spin transfer torque RAM (STTRAM), data is written into the FL by a torque produced by a current perpendicular to the plane of the structure. In addition, the tunneling current also gives rise to an Ampere torque. We have derived an expression for the Ampere torque and incorporated the same into the Landau Lifshitz Gilbert equation (LLGE) governing the magnetization dynamics of the FL.

We study the effects of inter layer exchange field between the FL and PL and also the spin torque as they are the significant factors in deciding the threshold current density. We use SPICE to model a MTJ within a square array of MTJs, making the compact magnetic models accessible to circuit design engineers. We study the FL switching currents required in the presence of various fields and torques in an STTRAM. We optimize the MTJ structure by means of varying the barrier thickness, barrier height and the insulating material using the compact SPICE model for the MTJ in an array.

Tunneling magneto resistance (TMR) is a figure of merit for an MTJ structure. Generally, to study tunneling characteristics of a multi layered structure, the transfer matrix (T matrix) method is used. Here, we prove that the scattering matrix (S matrix) method is numerically more stable for a thicker barrier or for a multibarrier structure. We derive the tunnel con-
ductance from the transition probability for a MTJ structure using perturbation theory and obtain an analytical expression for TMR by means of scattering matrix formalism. Finally, we propose a method for estimation of unoxidized metal layer formed in the growth of an MTJ from the experimental data, by means of the S matrix.