Chapter 6

Restrained domsaturation number of a graph

The restrained domsaturation number $d_{Sr}(G)$ of a graph $G = (V, E)$ is the least positive integer k such that every vertex of G lies in a restrained dominating set of cardinality k. In this chapter we obtain certain bounds for $d_{Sr}(G)$ and characterize the graphs with large restrained domsaturation numbers. We derive certain Nordhaus-Gaddum-type results on $d_{Sr}(G)$, characterize graphs with equal restrained domination number and restrained domsaturation number and obtain the relationship between $d_{Sr}(G)$ and certain other graph theoretic parameters.

6.1 Introduction

Acharya [1] introduced the concept of domsaturation number of a graph. The least positive integer k such that every vertex of G lies in a dominating set of cardinality k is called the domsaturation number of G and is denoted by $ds(G)$. A detailed study of this parameter was already done by Arumugam and Kala [5,6] and about 5 papers[5,6] have been published. Motivated by this concept, we introduce the concept of restrained
6.2 Some bounds on restrained domsaturation number of a graph

Definition 6.2.1. The restrained domsaturation number $d_{sr}(G)$ of a graph G is the least positive integer k such that every vertex of G lies in a restrained dominating set of cardinality k.

Example 6.2.2.

(i) If $G \cong K_p$ then $d_{sr}(G) = 1$.

(ii) If $G \cong K_{m,n}$, $2 \leq m \leq n$ then $d_{sr}(G) = 2$.

(iii) If $G \cong G_1$ where G_1 is given in Fig. 6.1 then $d_{sr}(G) = 4$.

Theorem 6.2.3. If P_p is any path with $p = 3k + r (k \in Z, k \geq 1, 0 \leq r \leq 2)$ then $d_{sr}(P_p) = k + r + 2$.

Proof. Case (i) $r = 0$
By theorem (1.71), \(\gamma_r(P_{3k}) = k + 2 \). Let \(V(P_{3k}) = \{v_1, v_2, \ldots, v_{3k-1}, v_{3k}\} \)

\[
A = \{v_1, v_4, v_7, \ldots, v_{3k-2}, v_{3k-1}, v_{3k}\}
\]
\[
B = \{v_1, v_2, v_5, \ldots, v_{3k-4}, v_{3k-1}, v_{3k}\}
\]
\[
C = \{v_1, v_2, v_3, v_6, \ldots, v_{3k-3}, v_{3k}\}
\]

are \(\gamma_r \)-sets of cardinality \(k + 2 \) and \(A \cup B \cup C = V(P_{3k}) \). Hence \(ds_r(P_{3k}) = k + 2 \).

Case (ii) \(r = 1 \).

By theorem 1.71, \(\gamma_r(P_{3k+1}) = k + 1 \).

Let \(V(P_{3k+1}) = \{v_1, v_2, \ldots, v_{3k}, v_{3k+1}\} \) \(A_1 = \{v_1, v_4, v_7, \ldots, v_{3k-2}, v_{3k+1}\} \) is a \(\gamma_r \)-set. \(B_1 = \{v_1, v_2, v_5, v_8, \ldots, v_{3k-4}, v_{3k-1}, v_{3k}, v_{3k+1}\} \) and \(C_1 = \{v_1, v_2, v_3, v_6, \ldots, v_{3k-3}, v_{3k}, v_{3k+1}\} \) are minimal restrained dominating sets of cardinality \(k + 3 \). Also \(B_1 \) and \(C_1 \) are the only minimal set containing \(v_2 \) and also \(A_1 \cup B_1 \cup C_1 = V(P_{3k+1}) \). Hence \(ds_r(P_{3k+1}) = k + 3 \).

Case (iii) \(r = 2 \).

By theorem 1.71, \(\gamma_r(P_{3k+2}) = k + 2 \). \(A_2 = \{v_1, v_4, v_7, \ldots, v_{3k-2}, v_{3k+1}, v_{3k+2}\} \) and \(B_2 = \{v_1, v_2, v_5, v_8, \ldots, v_{3k-1}, v_{3k+2}\} \) are \(\gamma_r \)-sets, and \(C_2 = \{v_1, v_2, v_3, v_6, \ldots, v_{3k-3}, v_{3k}, v_{3k+1}, v_{3k+2}\} \) is the only minimal restrained dominating sets containing \(v_3 \) and is of cardinality \(k + 4 \). Also \(A_2 \cup B_2 \cup C_2 = V(P_{3k+2}) \) and so \(ds_r(P_{3k+2}) = k + 4 \).

Theorem 6.2.4. If \(C_p \) is any cycle with \(p = 3k + r(k \in \mathbb{Z}, k > 1, 0 \leq r \leq 2) \) then \(ds_r(C_p) = k + r \).

Proof. Similar to theorem 6.2.3.

Theorem 6.2.5. If \(G \) is any connected graph with \(\delta(G) = 1 \) such that \(\gamma_r(G) \) is equal to the number of pendant vertices, then \(\gamma_r(G) + 1 \leq ds_r(G) \leq p \). Furthermore,
\(ds_r(G) = \gamma_r(G) + 1 \) if and only if every support of \(G \) is adjacent to at least two other supports and \(ds_r(G) = p \) if and only if \(G \cong G_1 \) where \(G_1 \) is given in Fig. 6.2.

![Fig. 6.2](image)

Proof. Let \(S \) be the set of all pendant vertices of \(G \) and let \(|S| = \lambda \). Since \(\gamma_r(G) = \lambda \), \(S \) is the only \(\gamma_r \)-set of \(G \) and so \(G \not\cong K_{1,p-1} \). Hence by theorem 2.8.8, every non-pendant vertex is a support. For every \(v \notin S \), \(S \cup \{v\} \cup D \) is a minimal restrained dominating set containing \(v \) where \(D \) is the minimum number of supports needed so that \(S \cup \{v\} \cup D \) is a minimal restrained dominating set containing \(v \). Since \(0 \leq |D| \leq p - \lambda - 1 \), we have \(\gamma_r(G) + 1 \leq ds_r(G) \leq \gamma_r(G) + 1 + p - \lambda - 1 \) so that \(\gamma_r(G) + 1 \leq ds_r(G) \leq p \).

Suppose \(ds_r(G) = \gamma_r(G) + 1 \). If there exists a support \(u \) adjacent to exactly one support \(v \), then the minimal restrained dominating set containing \(v \), say \(A \) should also contain \(u \) since otherwise, \(u \) has no neighbor in \(V - A \). Then \(ds_r(G) > \gamma_r(G) + 1 \) which is a contradiction and so every support of \(G \) is adjacent to at least 2 supports.

Conversely, for every support \(w \) in \(G \), \(S \cup \{w\} \) is a minimal restrained dominating set containing \(w \) and so \(ds_r(G) = \gamma_r(G) + 1 \).

Suppose \(ds_r(G) = p \). By theorem 2.8.8, there exists a support \(u \in V(G) \) such that the only restrained dominating set containing \(v \) is \(V(G) \). As \(G \not\cong K_{1,p-1} \), \(G \) has at least one another support, say \(w \).

Claim 1. For any support \(w \neq v \), \(d(v, w) = 1 \).
If not, there exists at least one support \(w' \) such that \(d(v, w') = k > 1 \). If \((v, w_1, w_2, \ldots, w')\) is a \(d(v, w') \) path, then \(V(G) - \{w_1, w_2\} \) is a restrained dominating set containing \(v \), which is a contradiction.

Claim 2. \(v \) is unique.

Suppose there exists another support \(v' \) such that \(V(G) \) is the only restrained dominating set containing \(v' \). Since \(G \) is connected, there exists a vertex \(x \) with \(d(x, v') \leq 2 \) and a vertex \(y \) with \(d(y, v) \leq 2 \) such that \(x \) and \(y \) are adjacent. In all the cases we get a contradiction as in claim 1, so that \(G \cong G_1 \). Converse is obvious. \(\Box \)

Theorem 6.2.6. For any graph \(G \), \(\gamma_r(G) \leq ds_r(G) \leq \min\{\gamma_r(G) + \Delta(G), p\} \) and these bounds are sharp.

Proof. Lower bound is obvious. Suppose \(ds_r(G) = \gamma_r(G) + \Delta(G) + k \) where \(k \geq 1 \). Then there exists a vertex \(v \in V(G) \) such that the cardinality of the minimal restrained dominating set \(A \) containing \(v \) is \(\gamma_r(G) + \Delta(G) + k \). If \(S \) is any \(\gamma_r \)-set, then \(v \not\in S \). Since \(|A| = \gamma_r(G) + \Delta(G) + k \) and \(S \cap N(v) \neq \emptyset \), \(\langle V - S \cup \{v\} \rangle \) has \(\Delta(G) + k - 1 \) isolated vertices and so \(|N(v)| \geq \Delta(G) + k \), which is a contradiction. Thus \(ds_r(G) \leq \gamma_r(G) + \Delta(G) \). But always \(ds_r(G) \leq p \) and so \(ds_r(G) \leq \min\{\gamma_r(G) + \Delta(G), p\} \).

![Fig. 6.3](image)

156
If $G \cong C_6$, $d_{sr}(G) = \gamma_r(G) = 2$ and so the lower bound is sharp. If $G \cong G_1$, where G_1 is graph given in Fig. 6.3(a), $d_{sr}(G) = 9 = \min\{\gamma_r(G) + \Delta(G) = 11, p = 9\}$. If $G \cong G_2$, where G_2 is given in Fig. 6.3(b), $d_{sr}(G) = 12 = \min\{\gamma_r(G) + \Delta(G) = 12, p = 14\}$. These exhibit the sharpness of the upper bound.

Theorem 6.2.7. If k is any integer such that $1 \leq k \leq \gamma_r(G)$, then there exists a connected graph G with $d_{sr}(G) = \gamma_r(G) + k$.

Proof. Let G be any connected graph such that $\gamma_r(G)$ equals the number of pendant vertices of G. Then by theorem 2.8.8, every non pendant vertex is a support. Since $d_{sr}(G) = \gamma_r(G) + k$ there exists at least one vertex $v \in V(G)$ such that the minimal restrained dominating set containing v is of cardinality $\gamma_r(G) + k$. So v is adjacent to $k - 1$ supports whose neighbors are only pendant vertices. So, the graph G can contain any number of supports, satisfying the following two conditions.

(i) Every support is adjacent to at most $k - 1$ supports whose neighbors are only pendant vertices.

(ii) There exists at least one vertex adjacent exactly to $k - 1$ supports whose neighbors are only pendant vertices.

Example 6.2.8. As an illustration of the above theorem, consider the graph G given in Fig. 6.4. We observe that $d_{sr}(G) = \gamma_r(G) + 5$.

Theorem 6.2.9. There exists a graph G for which $d_{sr}(G) - ds(G)$ can be made arbitrarily large.

Proof. Let $P_{p-k} = \{u_1, u_2, \ldots, u_{p-k}\}$ be a path on $p - k$ vertices, where $1 \leq k \leq p - 1$. Let $S = \{v, v_1, v_2, \ldots, v_{k-1}\}$ and join the vertex v to each of the vertices
in P_{p-k} and to each vertex in $S - \{v\}$. The resulting graph G is of order p and $\gamma(G) = 1$. Also $\{v, u_i\}$ for $1 \leq i \leq p-k$ and $\{v, v_j\}$ for $1 \leq j \leq k-1$ are minimal dominating sets containing u_i and v_j respectively and so $ds(G) = 2$.

Case 1. $k = p - 1$.

Now $V(P_{p-k}) = \{u_1\}$ and so $S \cup \{u_1\}$ is a restrained dominating set containing u_1. Hence $\gamma_r(G) = k + 1$ and $ds_r(G) = k + 1$ so that $ds_r(G) - ds(G) = k + 1 - 2 = k - 1$.

In all the other cases S is the minimum restrained dominating set of G and so $\gamma_r(G) = k$.

Case 2. $k = p - 2$.

Now $V(P_{p-k}) = \{u_1, u_2\}$ and $S \cup \{u_1, u_2\}$ is a minimal restrained dominating set of cardinality $k + 2$ containing u_1 as well as u_2. Then $ds_r(G) = k + 2$ and $ds_r(G) - ds(G) = k + 2 - 2 = k$.

Case 3. $k = p - 3$.

Let $V(P_{p-k}) = \{u_1, u_2, u_3\}$. Since $S \cup \{u_1, u_2, u_3\}$ is the only minimal restrained dominating set containing u_2, $ds_r(G) = k + 3$ and so $ds_r(G) - ds(G) = k + 3 - 2 = k + 1$.

Case 4. $k \leq p - 4$.

158
Every vertex \(u_i (1 \leq i \leq p-k) \) of \(P_{p-k} \) other than \(u_2 \) and \(u_{p-k-1} \) lies in a restrained dominating set of cardinality \(k + 1 \) since \(S \cup \{u_i\} \) is one such set. \(S \cup \{u_2\} \) and \(S \cup \{u_{p-k-1}\} \) are not restrained dominating sets as \(u_1 \) and \(u_{p-k} \) are isolated vertices in \((V - (S \cup \{u_2\})) \) and \((V - S \cup \{u_{p-k-1}\}) \) respectively. Hence \(d_{sr}(G) = k + 2 \) and so \(d_{sr}(G) - ds(G) = k \).

Hence \(d_{sr}(G) - ds(G) = k - 1 \) or \(k \) or \(k + 1 \) where \(k \) can be chosen arbitrarily large.

\[\square \]

6.3 Characterization of graphs with extreme restrained domsaturation numbers

Theorem 6.3.1. Let \(G \) be a connected graph. Then \(d_{sr}(G) = p \) if and only if \(G \cong G_i (1 \leq i \leq 2) \) where \(G_i (1 \leq i \leq 2) \) are given in Fig. 6.5.

\[\text{Fig. 6.5} \]

Proof. If \(d_{sr}(G) = p \) then there exists at least one vertex \(v \in V(G) \) such that the only minimal restrained dominating set containing \(v \) is \(V(G) \).

Case (i). \(v \) is a pendant vertex.

In this case, we have \(\gamma_r(G) = p \) by choice of \(v \). Hence by Theorem 1.69 \(G \cong G_1 \).

Case (ii). \(v \) is a non-pendant vertex.
Let $N(v) = \{v_1, v_2, \ldots, v_k\}(k \geq 2)$. If there exists an edge $(v_i, v_j) \in \langle N(v) \rangle (1 \leq i, j \leq k)$, then $V(G) - \{v_i, v_j\}$ is a restrained dominating set containing v and so $\langle N(v) \rangle$ is independent.

We now claim that every vertex in $V(G) - N[v]$ is a pendant vertex. Suppose there exists $u \in V(G) - N[v]$ such that $d(u) \geq 2$. Since G is connected, there exists a $u - v$ path P with length at least 2. Let $w \in N(u) \cap P$. Then $V(G) - \{u, w\}$ is a restrained dominating set containing v and hence $G \cong G_2$. Converse is obvious. □

The following corollary is immediate.

Corollary 6.3.2. Let G be any graph. Then $ds_r(G) = p$ if and only if every component of G is isomorphic to any one of the graphs in Fig (6.5).

Theorem 6.3.3. For any connected graph G, $ds_r(G) = p - 2$ if and only if $G \cong G_i(1 \leq i \leq 10)$ where $G_i(1 \leq i \leq 10)$ are given in Fig (6.6). Also diam$(G) \leq 7$.

Proof. Suppose $ds_r(G) = p - 2$. Then there exists at least one vertex v such that the minimal restrained dominating set containing v is of cardinality $p - 2$. For sake of brevity we denote a restrained dominating set containing v as a $RD - v$ set.

Let $N(v) = \{v_1, v_2, \ldots, v_m\}$. If $\langle N(v) \rangle$ has two edges $v_i v_j$ and $v_k v_l (1 \leq i, j, k, l \leq m)$ then $V(G) - \{v_i, v_j, v_k\}$ and $V(G) - \{v_i, v_j, v_k, v_l\}$ are $RD - v$ sets according as $v_j = v_k$ or $v_j \neq v_k$. Hence $\langle N(v) \rangle$ has at most one edge.

Case (i). $\langle N(v) \rangle$ has exactly one edge.

Let $e = v_i v_j \in E(\langle N(v) \rangle)$. If there exists $w \in N(v_i) \cap N(v_j)$ such that $w \neq v$ then $d(w) = 2$ since otherwise $V(G) - \{v_i, v_j, w\}$ is a $RD - v$ set. If there exists another $w' \in N(v_i) \cap N(v_j)$ such that $w' \neq v$ then $V(G) - \{v_i, w, w'\}$ is a $RD - v$ set and
Fig. 6.6
so w is unique. For every $x \in N(v_k) - \{v\}(1 \leq k \leq m, x \neq w)$ if $d(x) \geq 2$ then $V(G) - \{v_i, v_j, x\}$ and $V(G) - \{v_i, v_j, v_k, x\}$ are $RD - v$ sets according as $k \in \{i, j\}$ or otherwise. So $d(x) = 1$. Hence $G \cong G_1$. If there is no such w then $G \cong G_2$.

Case (ii). $\langle N(v) \rangle$ is independent.

By Theorem 6.3.1 it follows that $G \not\cong K_{1,p-1}$ and there exists an index $i(1 \leq i \leq m)$ such that v_i has non-pendant neighbors other than v. We now claim that there exists at most 2 indices i and j. Suppose there exists v_i, v_j and v_k having non-pendant neighbors w_i, w_j and w_k.

Suppose w_i' is another non-pendant neighbor of v_i. If w_i' is adjacent to w_i then $V(G) - \{v_i, w_i, w_j\}$ and $V(G) - \{v_i, w_i, v_j, w_j\}$ are $RD - v$ sets according as w_j is adjacent to a vertex in $\{v_i, w_i\}$ or w_j is adjacent to a vertex in $V(G) - \{v_i, w_i, w_i'\}$. If w_i' is not adjacent to w_i then $V(G) - \{v_i, w_i, w_i'\}$ is a $RD - v$ set. Hence w_i, w_j and w_k are unique non-pendant neighbors of v_i, v_j and v_k.

If $w_i = w_j = w_k$ then $V(G) - \{v_i, v_j, w_i\}$ is a $RD - v$ set. Suppose exactly two of them are equal say $w_i = w_j$. If w_k is adjacent to w_i then $V(G) - \{v_i, v_j, w_i\}$ is a $RD - v$ set. Otherwise $V(G) - \{v_i, w_i, v_k, w_k\}$ is a $RD - v$ set.

Suppose w_i, w_j, w_k are distinct. If w_i is adjacent to any vertex in $\{w_j, w_k\}$ say w_j then $V(G) - \{v_j, w_i, v_k, w_k\}$ and $V(G) - \{v_i, w_i, v_k, w_k\}$ are $RD - v$ sets according as w_k is adjacent to w_i or to a vertex in $\{w_j, V(G) - \{w_i, w_j\}\}$. If not $V(G) - \{v_i, w_i, v_j, w_j, v_k, w_k\}$ is a $RD - v$ set. Hence there exists at most 2 indices i and j such that v_i and v_j have non-pendant neighbors.

Subcase 1: There exists exactly two vertices v_i and $v_j(i \neq j; 1 \leq i, j \leq m)$ having non-pendant neighbors w_i and w_j.
As above \(v_i \) and \(v_j \) can each have exactly one non-pendant neighbor.

If \(w_i \) and \(w_j \) are distinct and adjacent, then at least one of \(w_i \) and \(w_j \) have degree 2 since otherwise \(V(G) - \{v_i, w_i, v_j, w_j\} \) is a \(RD - v \) set. If \(d(w_i) = d(w_j) = 2 \) then \(G \cong G_3 \). If \(d(w_i) = 2 \) and \(d(w_j) \geq 3 \) then \(x \in N(w_j) - \{v_j\} \) has degree 1 since otherwise \(V(G) - \{w_i, w_j, x\} \) is a \(RD - v \) set. In this case \(G \cong G_4 \). If \(w_i \) and \(w_j \) are non adjacent then \(V(G) - \{v_i, w_i, v_j, w_j\} \) is a \(RD - v \) set. If \(w_i = w_j \) then \(d(w_i) = 2 \) since otherwise \(V(G) - \{v_i, w_i, v_j\} \) is a \(RD - v \) set. Hence \(G \cong G_5 \).

Subcase 2: There exists exactly one vertex \(v_i \) having non-pendant neighbors.

As proved earlier \(v_i \) can have at most 2 non-pendant neighbors. So if \(\langle N(v_i) \rangle \) is not independent then there exists exactly one edge \(\langle w_i, x_i \rangle \) in \(\langle N(v_i) - \{v\} \rangle \). If \(d(w_i) = d(x_i) = 2 \) then \(G \cong G_6 \).

If \(d(w_i) \geq 3 \) and \(d(x_i) \geq 3 \) then \(V(G) - \{v_i, w_i, x_i\} \) is a \(RD - v \) set and so without loss of generality let \(d(w_i) \geq 3 \) and \(d(x_i) = 2 \). If \(w_i \) has non-pendant neighbor \(y_i \) other than \(v_i \) and \(x_i \) then \(V(G) - \{v_i, w_i, y_i\} \) is a \(RD - v \) set and so every neighbor of \(w_i \) is a pendant vertex. In this case \(G \cong G_7 \).

Suppose \(\langle N(v_i) \rangle \) is independent. By Theorem 6.3.1 at least one vertex say \(u_i \) in \(\langle N(v) - \{v\} \rangle \) is a non-pendant vertex. \(u_i \) is unique since if there exists another \(u_i \) then \(V(G) - \{v_i, u_i, w_i\} \) is a \(RD - v \) set. Also \(\langle N(u_i) \rangle \) is independent since if there exists an edge \(e = ab \) in \(\langle N(u_i) \rangle \) then \(V(G) - \{v_i, u_i, a\} \) is a \(RD - v \) set. If every neighbor of \(v_i \) other than \(v_i \) is a pendant vertex then \(G \cong G_8 \).

If \(v_i \) has a non-pendant neighbor say \(v_i'' \) then \(v_i'' \) is the only neighbor of \(v_i \) other than \(v_i \) since otherwise \(V(G) - \{v_i, v_i', v_i''\} \) is a \(RD - v \) set. As above \(\langle N(v_i'') \rangle \) is independent. If every neighbor of \(v_i'' \) other than \(v_i \) is a pendant vertex then \(G \cong G_9 \).

Otherwise, proceeding as above \(v_i'' \) has exactly one non-pendant neighbor \(v_i''' \) which
is the only neighbor of v''_i other than v'_i. Also $\langle N(v''_i) \rangle$ is independent. If every neighbor of v''_i other than v''_i is a pendant vertex then $G \cong G_{10}$. Otherwise if v''''_i is a non-pendant neighbor of v''_i then $V(G) - \{v_i, v'_i, v''_i, v''''_i\}$ is a RD - v set and so $\text{diam } G \leq 7$. \hfill \square

The following corollary is immediate.

Corollary 6.3.4. Let G be any graph. Then $ds_r(G) = p - 2$ if and only if exactly one component of G is isomorphic to any one graph in fig (6.6) and every other component is isomorphic to any graph in fig (6.5).

6.4 Some Nordhaus-Gaddum-type results on $ds_r(G)$

Theorem 6.4.1. Let $G \cong C_p$ where $p = 3k + r (r \in \mathbb{Z}, 0 \leq r \leq 3)$.

Then

$$ds_r(G) + ds_r(\tilde{G}) = \begin{cases} 4 & \text{if } p = 3 \\ 6 & \text{if } p = 4, 5 \\ k + r + 2 & \text{if } p \geq 6 \end{cases}$$

Proof. By theorem 6.2.4, $ds_r(C_p) = k + r$. If $p = 3$ then $ds_r(G) = 1$ and $ds_r(\tilde{G}) = 3$ so that $ds_r(C_p) + ds_r(\tilde{C}_p) = 4$. If $p = 4$, $ds_r(C_p) = 2$ and $ds_r(\tilde{C}_p) = 4$ so that $ds_r(C_p) + ds_r(\tilde{C}_p) = 6$. If $p = 5$, then $ds_r(C_p) = 3$, $ds_r(\tilde{C}_p) = 3$, and so $ds_r(C_p) + ds_r(\tilde{C}_p) = 6$. If $p \geq 6$, for any $u \in V(G)$, $\{u, v\}$ is a γ_r-set for \tilde{C}_p where $v \in N(u)$ in G. Hence $ds_r(\tilde{C}_p) = 2$, so that $ds_r(C_p) + ds_r(\tilde{C}_p) = k + r + 2$. \hfill \square

Theorem 6.4.2. For any connected graph G with at least two pendant vertices, $4 \leq ds_r(G) + ds_r(\tilde{G}) \leq p + 4$. Lower bound is attained if and only if $G \cong K_2$ and graphs
attaining upper bounds are characterized as follows.

\[
\text{attaining upper bounds are characterized as follows.}
\]

\[
\begin{align*}
ds_r(G) + ds_r(\bar{G}) &= \begin{cases}
p + 4 & \text{if and only if } G \cong P_4 \\
p + 3 & \text{if and only if } G \cong K_{1,2} \text{ or } G_1 \\
p + 2 & \text{if and only if } G \cong K_{1,p+1}(p \neq 3), G_2 \text{ or } G_3 \quad (G_3 \neq P_4, K_{1,2} \text{ and } G_1)
\end{cases}
\end{align*}
\]

where \(G_1\), \(G_2\) and \(G_3\) are given in Fig (6.7).

\[
\begin{align*}
\text{Fig. 6.7}
\end{align*}
\]

Proof. Lower bound follows by theorem 1.78. To establish the upper bound it is enough to prove that \(ds_r(\bar{G}) \leq 4\). Let \(P = \{u_1, u_2, \ldots, u_m\}\) be the set of pendant vertices of \(G\) and \(S = \{v_i | 1 \leq i \leq m\}\) be the set of corresponding supports (not necessarily distinct). If \(m \geq 3\) and there exists an index \(i\) such that \((V(G) - \{u_i, v_i\})\) has two distinct supports then \(A = \{u_i, v_i\}\) is a restrained dominating set of \(\bar{G}\). If \(w\) is the unique support in \((V(G) - \{u_i, v_i\})\) then \(A = \{u_i, v_i, w\}\) is a restrained dominating set of \(\bar{G}\). Otherwise \(v_i\) is the only support of \(G\) and \(A = \{u_i, v_i\}\) is a restrained dominating set of \(\bar{G}\). In all cases \(A \cup \{x\}\) is a restrained dominating set of \(\bar{G}\), containing \(x\), where \(x \in V(G) - (P \cup S)\). Also for every \(i\), \(\{u_i, v_i\}\) is a restrained dominating set of \(\bar{G}\). Hence \(ds_r(\bar{G}) \leq 4\).

Suppose \(m = 2\). Let the two pendant vertices be \(u\) and \(v\) with supports \(u_1\) and \(v_1\) respectively.
Case (i). $u_1 = v_1$

Let $D = V(G) \setminus \{u, v, u_1\}$. If $D = \phi$, then $\{u, v, u_1\}$ is a restrained dominating set of \tilde{G}. If $D \neq \phi$, then $\{u, v_1\}, \{v, v_1\}$ and $\{u, v_1, x\} (x \in V(G) \setminus \{x, v, u_1\})$ are restrained dominating sets of \tilde{G}.

Case (ii). $u_1 \neq v_1$

If $(u_1, v_1) \notin E(G)$, then $\{v, u_1\}, \{u, v_1\}$ and $\{u, v_1, x\} (x \in V(G) \setminus \{u, v, u_1, v_1\})$ are restrained dominating sets of \tilde{G}. Suppose $(u_1, v_1) \in E(G)$ and let $B = V(G) \setminus \{u, v, u_1, v_1\}$. If $B = \phi$, then $\{u, v, u_1, v_1\}$ is a restrained dominating set of \tilde{G}. Suppose $B \neq \phi$. If $|B| \geq 2$, then $\{u, u_1, v_1, x\} (\{v, u_1, v_1, x\}, x \in B)$ are restrained dominating sets of \tilde{G}. If $|B| = 1$ and $B = \{w\}$ then $\{u_1, v_1, w\}, \{u, u_1, v_1\}, \{u_1, v_1, v\}$ are restrained dominating sets of \tilde{G}. Thus $d_{sr}(\tilde{G}) \leq 4$ and so $4 \leq d_{sr}(G) + d_{sr}(\tilde{G}) \leq p+4$.

If $d_{sr}(G) + d_{sr}(\tilde{G}) = 4$, by hypothesis $d_{sr}(G) = d_{sr}(\tilde{G}) = 2$ since G contains at least 2 pendant vertices. Hence $G \cong K_2$. Converse is obvious.

Suppose $d_{sr}(G) + d_{sr}(\tilde{G}) = p+4$. By above argument, $d_{sr}(G) = p$ and $d_{sr}(\tilde{G}) = 4$ and the conclusion follows from theorem (6.3.1). If $d_{sr}(G) + d_{sr}(\tilde{G}) = p + 3$, then $d_{sr}(G) = p$ and $d_{sr}(\tilde{G}) = 3$ and so by theorem (6.3.1) we have $G \cong K_{1,2}$ or G_1.

If $d_{sr}(G) + d_{sr}(\tilde{G}) = p + 2$ then either $d_{sr}(G) = p$ and $d_{sr}(\tilde{G}) = 2$ or $d_{sr}(G) = p - 2$ and $d_{sr}(\tilde{G}) = 4$. By theorems (6.3.1) and (6.3.3) it is easy to verify that $G \cong K_{1, p-1}(p \neq 3), G_2$ or G_3 ($G_3 \notin P_4, K_{1,2}$ and G_1).

Theorem 6.4.3. For a connected graph G with $p \geq 2$ and $\text{diam} G \neq 2$, $4 \leq d_{sr}(G) + d_{sr}(\tilde{G}) \leq p + 4$ and the bounds are sharp.

Proof. By theorem 1.78, $\gamma_r(G) + \gamma_r(\tilde{G}) \geq 4$ and hence $d_{sr}(G) + d_{sr}(\tilde{G}) \geq 4$. By theorem 6.3.1, $d_{sr}(G) = p$ if and only if $G \cong G_1$ or G_2 where G_1 and G_2 are
given in Fig. 6.8.

![Fig. 6.8](image)

As diam $G \neq 2$, $G \not\cong G_1$. If $G \cong G_2$, then $ds_r(\tilde{G}) \leq 4$. Suppose $G \not\cong G_2$. Then $ds_r(G) \leq p - 2$. Let u and v be any two vertices with $d(u, v) = \text{diam} G$ and let $P = \{u, v_1, v_2, \ldots, v_{n-1}, v\}$ be a path of length $d(u, v)$.

Let $N = N(v_1) \cap N(v_2)$.

Case (i). $N = \emptyset$.

In this case, $\{v_1, v_2\}$ is a restrained dominating set of \tilde{G}. For every $x \in V(G) \setminus \{u, v, v_1, v_2\}$, $\{v_1, v_2, x\}$ is a restrained dominating set of \tilde{G} containing x. If $V(G) \setminus \{u, v, v_1, v_2\} = \emptyset$, $G \cong P_4$ and so $ds_r(\tilde{G}) = 4$.

Since $V(G) \setminus \{u, v, v_1, v_2\} \neq \emptyset$, either $\{u, v_2, v\}$ or $\{u, v_1, v\}$ is a restrained dominating set of \tilde{G} containing u and v. Thus in this case $ds_r(\tilde{G}) \leq 4$ so that $ds_r(G) + ds_r(\tilde{G}) \leq p + 4$.

Case (ii) $N \neq \emptyset$

Now, $V(G) \setminus N - \{v_1\}(V(G) \setminus N - \{v_2\})$ is a restrained dominating set in G containing $v_2(v_1)$.

Let $x \in N$.

If $|N| = 1$, $V(G) \setminus \{v_1, v_2\}$ is a restrained dominating set in G containing x. If
$|N| > 1$, $(V(G) \setminus (N \cup \{v_1\}) \cup \{x\})$ is a restrained dominating set in G containing x. So

$$d_{sr}(G) \leq |(V(G) \setminus (N \cup \{v_1\}) \cup \{x\})|$$

$$= p - |N| - 1 + 1 = p - |N|.$$

Also $N \cup \{v_1, v_2\}$ and $N \cup \{u, v\}$ are restrained dominating sets in \bar{G}. For $x \notin N \cup \{u, v, v_1, v_2\}$, $N \cup \{v_1, v_2, x\}$ is a restrained dominating set in \bar{G} containing x. So $d_{sr}(\bar{G}) \leq |N| + 3$ so that

$$d_{sr}(G) + d_{sr}(\bar{G}) \leq p - |N| + |N| + 3 = p + 3.$$

Combining cases (i) and (ii) we have

$$d_{sr}(G) + d_{sr}(\bar{G}) \leq p + 4.$$

Sharpness of the lower bound is exhibited by $G \cong K_3$ and that of upper bound is exhibited by $G \cong P_4$.

6.5 Graphs with equal restrained domination and restrained domsaturation number

Theorem 6.5.1. Let G be any graph. Then

(i) $d_{sr}(G) = \gamma_r(G) = 1$ if and only if $G \cong K_p (p \neq 2)$.

(ii) $d_{sr}(G) = \gamma_r(G) = p$ if and only if $G \cong$ galaxy.

Proof. If $d_{sr}(G) = \gamma_r(G) = 1$ then $\deg v = p - 1$ for every $v \in V(G)$ and so $G \cong K_p$. Converse is obvious.

For any graph G it follows from Theorem 1.69 and the fact that $\gamma_r(G) \leq d_{sr}(G)$, $d_{sr}(G) = \gamma_r(G) = p$ if and only if $G \cong$ galaxy. □
Theorem 6.5.2. Let $G = (V_1, V_2)$ be any connected bipartite graph with $|V_1| \geq |V_2|$. Then $d_{sr}(G) = \gamma_r(G) = 2$ if and only if $G \cong K_2$, $K_{m,n}(n \neq 1)$, $2K_1$ or $K_{m,n} \setminus X (n \geq 3)$ where X is any set of independent edges in G.

Proof. If $d_{sr}(G) = \gamma_r(G) = 2$ then every vertex in V_1 is non adjacent to at most one vertex in V_2 and vice versa. Hence the theorem follows.

Theorem 6.5.3. Let G be a connected cubic graph. Then $d_{sr}(G) = \gamma_r(G) = 2$ if and only if G is isomorphic to one of the graphs G_1, G_2, G_3 or G_4 given in Fig. 6.9.

![Fig. 6.9](image)

Proof. If G is a cubic graph with $d_{sr}(G) = \gamma_r(G) = 2$, then $5 \leq p \leq 8$. As G is cubic, $p = 6$ or 8. If $p = 6$ then $G \cong G_1$ or G_2. Suppose $p = 8$.

Claim: G is 2-connected.

Suppose e is a cut edge of G. As $\gamma_r(G) = 2$, the components of $G \setminus e$ are complete graphs, either K_4 or K_3. Since $\Delta(G) = 3$ they cannot be K_4 and so $p = 6$ which is a contradiction. Hence G is 2-connected and so by theorem 1.29, G is Hamiltonian.

Let $C = (v_1, v_2, \ldots, v_8, v_1)$ be a hamiltonian cycle in G. Since $d_{sr}(G) = \gamma_r(G) = 2$, for every $v \in V(G)$ there exists $u \in V(G) - N[v]$ such that u is adjacent to all the vertices in $V(G) - N[v]^*$.

Case 1. G contains a triangle.
Without loss of generality let \(v_1 \) be adjacent to \(v_3 \). By \((*)\), \(v_2 \) cannot be adjacent to \(v_5, v_6 \) or \(v_7 \). Hence \(v_2 \) can be adjacent only to \(v_4 \) or \(v_8 \). If \(v_2 \) is adjacent to \(v_4 \), by symmetry we have \(v_5 \) is adjacent to \(v_7 \), \(v_6 \) is adjacent to \(v_8 \) and so \(G \cong G_3 \).

Case 2. \(G \) contains no triangles.

Now \(v_1 \) cannot be adjacent to \(v_3 \) or \(v_7 \). By \((*)\), \(v_1 \) is not adjacent to \(v_5 \) and so \(v_1 \) is adjacent to either \(v_4 \) or \(v_6 \). Without loss of generality, let \(v_1 \) be adjacent to \(v_6 \).

Also \(v_2 \) cannot be adjacent to \(v_4 \) or \(v_8 \). If \(v_2 \) is adjacent to \(v_7 \) then \(v_3 \) is adjacent to \(v_8 \) and so \(d(v_4) = 2 \) which is a contradiction. So \(v_2 \) is adjacent to \(v_5 \). By \((*)\), \(v_3 \) cannot be adjacent to \(v_7 \) and so \(v_3 \) is adjacent to \(v_8 \). Then \(v_4 \) is adjacent to \(v_7 \) and \(G \cong G_4 \). Converse is obvious.

Theorem 6.5.4. Let \(T \) be a tree of order \(p \geq 3 \). Then \(ds_r(G) = \gamma_r(G) = p - 2 \) if and only if \(T \) is obtained from \(P_6 \) by adding zero or more number of pendant vertices to the supports.

Proof. Follows from theorem 1.74. \(\square \)

Theorem 6.5.5. Let \(G \) be a connected graph of order \(p \) containing a cycle. Then \(ds_r(G) = \gamma_r(G) = p - 2 \) if and only if \(G \) is \(C_4, C_5 \) or \(G \) can be obtained from \(C_3 \) by adding zero or more number of pendant vertices to at most 2-vertices of the cycle.

Proof. Follows from theorem 1.75. \(\square \)

Theorem 6.5.6. If \(G \) is a domatically full graph that is \(k \)-regular \((k \geq 2) \) then \(ds_r(G) = \gamma_r(G) \).

Proof. Let \(\{D_1, D_2, \ldots, D_{k+1}\} \) be a domatic partition of \(G \) so that for any \(i(1 \leq i \leq k + 1), D_1 \cup D_2 \cup \cdots \cup D_{i-1} \cup D_{i+1} \cup \cdots \cup D_{k+1} = V - D_i \). Since \(k \geq 2 \), every
u ∈ V - Di has a neighbor in V - Di and so Di is a restrained dominating set for every i(1 ≤ i ≤ k + 1). Moreover any set Di either contains a vertex or exactly one of its neighbors. So each Di is independent. Since every vertex in Di is adjacent to exactly one vertex in each Dj(j ≠ 1, 1 ≤ j ≤ k + 1), |Di| = γr for every i. Thus $ds_r(G) = \gamma_r(G)$. \hfill \Box

Theorem 6.5.7. For any tree T, $ds_r(T) = \gamma_r(T) = 2$ if and only if T is not isomorphic to $K_{1,2}$ or $B(r,s)$ where at least one of r or s equals 1.

Proof. Let T be a tree not isomorphic to $K_{1,2}$ or $B(r,s)$ where at least one of r and s equals 1. If $T \cong K_{1,p-1}(p \neq 3)$ then $\gamma_r(T) = 2 = ds_r(T)$. Suppose $T \not\cong K_{1,p-1}$. Then there exists at least 2 pendant vertices u and v with distinct supports u_1 and v_1 respectively and by choice of T, $d_T(u_1) \leq p - 3$ and $d_T(v_1) \leq p - 3$.

Case 1. $d_T(u_1) = p - 3$ and $d_T(v_1) = p - 3$.

If u_1 and v_1 are adjacent then $T \cong T_1$ where T_1 is given in Fig.6.10.

![Fig. 6.10](image)

{u, v_1, $\{v_2, v_1\}$, $\{u, u_1\}$, $\{u_2, u_1\}$} are all minimum restrained dominating sets of \bar{T} and so $\gamma_r(\bar{T}) = ds_r(\bar{T}) = 2$.

If u_1 and v_1 are non-adjacent then $T \cong P_5$ and clearly $\gamma_r(\bar{T}) = ds_r(\bar{T}) = 2$.

Case 2. $d_T(u_1) = p - 3$ and $d_T(v_1) \neq p - 3$.

171
If u_1 and v_1 are adjacent, then $T \cong T_2$ given in Fig. 6.11.

Since $dT(v_1) \neq p - 3$, $dT(u_1) \geq 4$. For every $u' \in N(u_1), \{u_1, u'\}$ is a γ_r-set of \bar{T} and for every $v' \in N(v_1), \{v_1, v'\}$ is a γ_r-set of \bar{T} and so $\gamma_r(\bar{T}) = ds_r(\bar{T}) = 2$.

If u_1 and v_1 are non-adjacent then $T \cong T_3$ given in Fig. 6.12.

As above $dT(u_1) \geq 3$. For every $u' \in N(u_1), \{u', u_1\}$ is a γ_r-set of \bar{T}. Also $\{u_1, v\}$ and $\{v_1, u\}$ are γ_r-sets of \bar{T} and so $\gamma_r(\bar{T}) = ds_r(\bar{T}) = 2$.

Case 3. $dT(u_1) \neq p - 3$ and $dT(v_1) = p - 3$.

This is symmetrical to case 2.

Case 4. $dT(u_1) \neq p - 3$ and $dT(v_1) \neq p - 3$.

If u_1 and v_1 are adjacent then $dT(u_1) \geq 4$ and $dT(v_1) \geq 4$ and for every $u' \in N(u_1), \{u_1, u'\}$ is a γ_r-set of \bar{T} and for every $v' \in N(v_1), \{v_1, v'\}$ is a γ_r-set of \bar{T} so that $ds_r(\bar{T}) = \gamma_r(\bar{T}) = 2$.

Suppose u_1 and v_1 are non-adjacent. Then $dT(u_1) \geq 3$ and $dT(v_1) \geq 3$. For
every \(x \in V(T) \) with \(d(u_1, x) \neq 2, \{ x, u_1 \} \) is a \(\gamma_r \)-set of \(\hat{T} \) containing \(x \) and if \(d(u_1, x) = 2, \{ x, u \} \) is a \(\gamma_r \)-set of \(\hat{T} \) containing \(x \). The \(\gamma_r \)-sets containing neighbors of \(u_1 \) and \(v_1 \) are as above. Thus \(\gamma_r(\hat{T}) = ds_r(\hat{T}) = 2 \).

Conversely suppose that \(ds_r(\hat{T}) = \gamma_r(\hat{T}) = 2 \).

If \(T \cong K_{1,2} \) then \(\gamma_r(\hat{T}) = 3 \). Suppose \(T \cong B(r, s) \) where \(r = s = 1 \). Then \(T \cong P_4 \) and \(ds_r(P_4) = ds_r(P_4) = 4 \). If \(T \cong B(r, s) \) with exactly one of \(\{ r, s \} \) having value 1, then there is no \(\gamma_r \)-set of \(\hat{T} \) of cardinality 2 containing \(u \). These contradictions exhibit that \(T \) is not isomorphic to \(K_{1,2} \) or \(B(r, s) \) where at least one of \(r \) and \(s \) equals 1. \(\square \)

6.6 Relationship of restrained domsaturation number with certain other graph theoretic parameters

Theorem 6.6.1 Let \(G \) be any graph and let \(k(G) \) be the connectivity of \(G \). Then
\[
\text{ds}_r(G) + k(G) \leq p + \Delta(G)
\]
and equality holds if and only if \(G \cong K_2 \).

Proof. Since \(\text{ds}_r(G) \leq p \) and \(k(G) \leq \Delta(G) \) we have \(\text{ds}_r(G) + k(G) \leq p + \Delta(G) \). If equality holds then \(\text{ds}_r(G) = p \) and \(k(G) = \Delta(G) \) and the result follows from theorems 6.3.1 and 1.27. \(\square \)

Theorem 6.6.2 For any connected graph \(G \), \(\text{ds}_r(G) + \text{diam}(G) \leq 2p - 1 \). Further

(i) \(\text{ds}_r(G) + \text{diam}(G) = 2p - 1 \) if and only if \(G \cong P_p(p \leq 5) \)

(ii) \(\text{ds}_r(G) + \text{diam}(G) = 2p - 2 \) if and only if \(G \cong K_{1,3}, G_1 \) or \(G_2 \) where \(G_1 \) and \(G_2 \) are given in Fig. 6.13.
(iii) $d_s(G) + \text{diam}(G) = 2p - 3$ if any only if $G \cong K_{1,4}, P_p (6 \leq p \leq 8)$ or $G_i (1 \leq i \leq 7)$ where G_i are given in Fig.6.14.

Proof. Since G is connected, $\text{diam}(G) \leq p - 1$. Always $d_s(G) \leq p$ and so $d_s(G) + \text{diam}(G) \leq 2p - 1$. Suppose $d_s(G) + \text{diam}(G) = 2p - 1$. Then $d_s(G) = p$ and $\text{diam}(G) = p - 1$. Since $d_s(G) = p$, by theorem (6.3.1) we observe that $\text{diam}(G) \leq 4$ and so $p \leq 5$. For any graph on p vertices ($3 \leq p \leq 5$) other than P_p we have $d_s(G) + \text{diam}(G) \neq 2p - 1$ and so $G \cong P_p (p \leq 5)$. Converse is obvious.

Suppose $d_s(G) + \text{diam}(G) = 2p - 2$. Since it is not possible that $d_s(G) = p - 1$ we have $d_s(G) = p$ and $\text{diam}(G) = p - 2$. By theorem (6.3.1), we observe that
diam$(G) \leq 4$ and so $p \leq 6$. Among all the graphs with $p \leq 6$, we observe that $K_{1,3}, G_1$ and G_2 alone satisfy the given condition. Converse is obvious.

Suppose $d_{sr}(G) + \text{diam}(G) = 2p - 3$. Then either $d_{sr}(G) = p$ and $\text{diam}(G) = p - 3$ (or) $d_{sr}(G) = p - 2$ and $\text{diam}(G) = p - 1$. If $d_{sr}(G) = p$, then by theorem (6.3.1) $p \leq 7$ and among all such graphs we observe that only $K_{1,4}$ and $G_i(1 \leq i \leq 7)$ satisfy the given condition. If $d_{sr}(G) = p - 2$ then by theorem (6.3.3) $p \leq 8$ and among all graph on $p \leq 8$ vertices, we observe that only P_6, P_7, P_8, satisfy the given condition.

Converse is obvious. \hfill \Box

Theorem 6.6.3 Let G be any connected graph and $\chi(G)$ be the chromatic number of G. Then $d_{sr}(G) + \chi(G) \leq p + \Delta(G) + 1$ and equality holds if and only if $G \cong K_2$.

Proof. Since $d_{sr}(G) \leq p$ we have $d_{sr}(G) + \chi(G) \leq p + \Delta(G) + 1$. If $d_{sr}(G) = p$ then by theorems 6.3.1 and 1.36, $G \cong K_2$. \hfill \Box

Theorem 6.6.4 Let G be any connected bipartite graph. Then $d_{sr}(G) + \chi(G) = p + 2$ if and only if $G \cong G_1$ or G_2 where G_1 and G_2 are given in Fig. 6.15.

![Fig. 6.15](chart.png)

Proof. If $d_{sr}(G) + \chi(G) = p + 2$ then $d_{sr}(G) = p$ and the result follows from theorems 6.3.1 and 1.37. \hfill \Box
Theorem 6.6.5 Let G be any connected bipartite graph. Then $d_{sr}(G) + \chi(G) = p$ if and only if $G \cong G_1, G_2, G_3$, or G_4 given in Fig. 6.16.

![Fig. 6.16](image)

Proof. If $d_{sr}(G) + \chi(G) = p$ then $d_{sr}(G) = p - 2$ and the theorem follows from theorem 6.3.3. Converse is obvious.

Corollary 6.6.6 For any tree G, $d_{sr}(G) + \chi(G) = p$ if and only if $G \cong G_2, G_3$ or G_4 where G_2, G_3, G_4 are given in Fig. 6.16.

Proof. Follows from theorem 6.6.5.

Problem 6.6.7 (i) Characterize all connected graphs for which $d_{sr}(G) = \gamma_r(G)$.

(ii) Characterize graphs with $d_{sr}(G) = p - 3$.

176