Chapter 5

Restrained domination in subdivision graphs

In this chapter we study the restrained domination in subdivision graphs. We obtain certain bounds for $\gamma_r(S(G))$, establish the sharpness for these bounds and derive a Nordhaus-Gaddum type result. Moreover we define $Sd_{\gamma_r}(G)$, the restrained subdivision number of a graph G and characterize several classes of graphs having $Sd_{\gamma_r}(G) = 1$.

5.1 Introduction

Arumugam and Paulraj [9] obtained several results concerning domination parameters in subdivision graphs. Arumugam [8] considered another type of graph modification and defined domination subdivision number $Sd_{\gamma}(G)$ of a graph G to be minimum number of edges that must be subdivided where each edge can be subdivided at most once, in order to increase the domination number. Bhatacharya and Vijayakumar [3], Favaron et. al. [37] and Haynes et. al. [29] obtained several results on $Sd_{\gamma}(G)$. In
this chapter we make a study of restrained domination in subdivision graphs. We introduce the concept of restrained subdivision number $\gamma_r(Sd.)$ and initiate a study of this parameter.

5.2 Restrained domination in subdivision graphs

Definition 5.2.1. If G is a (p, q) graph, the subdivision graph $S(G)$ is a $(p+q, 2q)$ graph which is obtained by subdividing each edge of G exactly once.

Example 5.2.2.

1. If $G \cong P_p$ then $S(G)$ is P_{2p-1}.
2. If $G \cong C_p$ then $S(G)$ is C_{2p}.
3. If $G \cong \text{star}$ then $S(G)$ is a spider.

Theorem 5.2.3.

(i) $\gamma_r(S(C_p)) = 2p - 2\lfloor \frac{2p}{3} \rfloor$.

(ii) $\gamma_r(S(K_p)) = \begin{cases} p + 1 & \text{if } p = 2 \\ \frac{5k^2 - k}{2} & \text{if } p = 3k \\ \frac{5k^2 + k + 2}{2} & \text{if } p = 3k + 1 \\ \frac{5k^2 + 5k + 4}{2} & \text{if } p = 3k + 2 \end{cases}$

(iii) $\gamma_r(S(K_{m,n})) = m + n$ if $m \leq n$ and $m \geq 2$.

(iv) $\gamma_r(S(W_p)) = p$.

Proof. (i) $\gamma_r(S(C_p)) = \gamma_r(C_{2p}) = 2p - 2\lfloor \frac{2p}{3} \rfloor$.

(ii) When $p = 2$, $S(K_p) = P_3$ and so $\gamma_r(S(K_p)) = p + 1$.

133
Let $p \geq 3$. Then K_p is a Hamiltonian graph, containing a cycle of length p. So $S(K_p)$ contains a cycle of length $2p$. Let $C_{2p} = (1, u_1, 2, u_2, \ldots, p, u_p)$, where $1, 2, \ldots, p \in K_p$ and $u_1, u_2, \ldots, u_p \in V(S(K_p)) - V(K_p)$. Let D be a minimum restrained dominating set of C_{2p} and we aim at constructing a restrained dominating set S of $S(K_p)$ containing D. Let $D_0 = D \cap V(K_p)$ and $D_1 = (V - D) \cap V(K_p)$.

By theorem 1.72,

$$\gamma_r(C_{2p}) = 2p - 2 \left\lfloor \frac{2p}{3} \right\rfloor$$

and so

$$|D| = 2p - 2 \left\lfloor \frac{2p}{3} \right\rfloor,$$

which is even. Without loss of generality let $1 \in D$. We observe that

$$|D_0| = \frac{|D|}{2} = p - \left\lfloor \frac{2p}{3} \right\rfloor.$$

\[\square \]

Case (i). Let $p = 3k$.

Then $D_0 = \{1, 4, 7, \ldots, 3k - 2\}$ and $D_1 = \{2, 3; 5, 6; 8, 9, \ldots, 3k - 1, 3k\}$. Since $1, 4 \in D \subset S$, the vertex of $V(S(K_p))$ which subdivides the edge joining 1 and 4 must be in S. So $\binom{|D_0|}{2}$ vertices lie in S. Also every vertex which subdivides every edge joining 2 and any vertex in D_1 except 3 also must lie in S. Similarly for 3. Now

$$|D_1| = p - |D_0| = p - \left(p - \left\lfloor \frac{2p}{3} \right\rfloor \right) = \left\lfloor \frac{2p}{3} \right\rfloor.$$

So

$$2 \left(\left\lfloor \frac{2p}{3} \right\rfloor - 2 \right) + 2 \left(\left\lfloor \frac{2p}{3} \right\rfloor - 4 \right) + \cdots + 2 \left(\left\lfloor \frac{2p}{3} \right\rfloor - 2(k - 1) \right)$$

vertices lie in S.

134
Thus

\[2p - 2 \left\lfloor \frac{2p}{3} \right\rfloor + \left(p - \left\lfloor \frac{2p}{3} \right\rfloor \right) + 2 \left(\left\lfloor \frac{2p}{3} \right\rfloor - 2 \right) \]
\[+ 2 \left(\left\lfloor \frac{2p}{3} \right\rfloor - 4 \right) + \cdots + 2 \left(\left\lfloor \frac{2p}{3} \right\rfloor - 2(k - 1) \right) \]

vertices lie in \(S \).

From the construction of \(S \), \(V - S \) has no isolated vertices, \(S \) dominates \(S(K_p) \).

\(S - \{ v \} \) is not a restrained dominating set of \(S(K_p) \forall v \in S \).

Thus

\[\gamma_r(S(K_p)) = 2p - 2 \left\lfloor \frac{2p}{3} \right\rfloor + \left(p - \left\lfloor \frac{2p}{3} \right\rfloor \right) + 2 \left(\left\lfloor \frac{2p}{3} \right\rfloor - 2 \right) \]
\[+ 2 \left(\left\lfloor \frac{2p}{3} \right\rfloor - 4 \right) + \cdots + 2 \left(\left\lfloor \frac{2p}{3} \right\rfloor - 2(k - 1) \right) = \frac{5k^2 - k}{2} \]

Case (ii). \(p = 3k + 1 \).

Since in this case \(u_{3k+1} \), which is the subdivision vertex of the edge joining 1 and

\(3k + 1 \) already lies in \(D \) so we have,

\[\gamma_r(S(K_p)) = 2p - 2 \left\lfloor \frac{2p}{3} \right\rfloor + \left(p - \left\lfloor \frac{2p}{3} \right\rfloor \right) - 1 + 2 \left(\left\lfloor \frac{2p}{3} \right\rfloor - 2 \right) + 2 \left(\left\lfloor \frac{2p}{3} \right\rfloor - 4 \right) \]
\[+ \cdots + 2 \left(\left\lfloor \frac{2p}{3} \right\rfloor - 2(k - 1) \right) = \frac{5k^2 + k + 2}{2} \]

Case (iii). \(p = 3k + 2 \).

In this case \(|D_1| = \left\lfloor \frac{2p}{3} \right\rfloor = 2k + 1 \) and so

\[\gamma_r(S(K_p)) = 2p - 2 \left\lfloor \frac{2p}{3} \right\rfloor + \left(p - \left\lfloor \frac{2p}{3} \right\rfloor \right) + 2 \left(\left\lfloor \frac{2p}{3} \right\rfloor - 2 \right) + 2 \left(\left\lfloor \frac{2p}{3} \right\rfloor - 4 \right) \]
\[+ \cdots + 2 \left(\left\lfloor \frac{2p}{3} \right\rfloor - 2k \right) = \frac{5k^2 + 5k + 4}{2} \]

(iii) Case (i). Let \((X, Y)\) be a bipartition of \(K_{m,n} \) with

\[X = \{ u_1, u_2, \ldots, u_m \} \text{ and } Y = \{ v_1, v_2, \ldots, v_n \} \]
Let \(w_j \) be the vertex subdividing the edge \(e_{ij} = u_i, v_j \) where \(1 \leq i \leq m \) and \(1 \leq j \leq n \). If \(A = \{w_i | 1 \leq i \leq m\} \), then \(D = Y \cup A \) is a restrained dominating set of \(S(K_{m,n}) \). For any \(v \in Y \) \(D \setminus \{v\} \) is not a dominating set since either \(v \) turns to be an isolated vertex or some vertex in \(V(S(K_{m,n}) \setminus V(K_{m,n}) \) loses its domination. Similarly for any \(w_{i1} \in A, D \setminus \{w_{i1}\} \) is not a dominating set as the corresponding vertex \(u_i \) is not dominated. Hence \(D \) is a minimal dominating set. Clearly it is a minimum dominating set and so \(\gamma_r(S(K_{m,n})) = |D| = |Y| + |A| = m + n \).

Case (v). \(\gamma_r(S(W_p)) = p \).

Let \(u \) be the center of \(W_p \) and \(u_i \ 1 \leq i \leq p - 1 \) be the vertices in \(N(u) \). Let \(u_i(1 \leq i \leq p - 1) \) be the vertices subdividing edges \(uu_i \) and \(w_i \) be the vertices subdividing edges \(uu_i+1(u_i = u_1) \). It is easy to observe that \(D = \{u\} \cup \{w_i\}(1 \leq i \leq p - 1) \) is a \(\gamma_r \)-set of \(S(W_p) \) and so \(\gamma_r(S(W_p)) = p \).

Theorem 5.2.4. If \(G \) is a connected \((p, q)\) graph such that \(G \not\cong K_2, 2 \leq \gamma_r(S(G)) \leq p + q - \Delta(G) \). Lower bound is attained if and only if \(G \cong C_3 \) and upper bound is attained by \(G \cong K_{1,p-1}(p \neq 2) \).

Proof. If \(\gamma_r(S(G)) = 1 \) then by theorem 1.76, \(S(G) \cong K_1 + H \) where \(H \) is a graph without isolated vertices. But there is no \(G \) for which \(S(G) \cong K_1 + H \) and so \(\gamma_r(S(G)) \geq 2 \). Let \(u \in V(G) \) with \(\deg_G u = \Delta(G) \). Then \(\deg_{S(G)} u = \Delta(G) \). Let \(u_1, u_2, \ldots, u_{\Delta(G)} \) be the vertices in \(V(G) \cap N(u) \) and \(v_1, v_2, \ldots, v_{\Delta(G)} \) be the newly added vertices of \(S(G) \) on these \(\Delta_G \) edges. Any set \(S \subseteq V(S(G)) \) such that \(V - S = \{u, v_1, v_2, \ldots, v_{i-1}, v_{i+1}, \ldots, v_{\Delta(G)}\} \) is a restrained dominating set of \(S(G) \) and so \(\gamma_r(S(G)) \leq p + q - \Delta(G) \).

Let \(\gamma_r(S(G)) = 2 \). Then \(G \) can contain at most one pendant vertex since if \(G \) contains 2 pendant vertices then by theorem 2.8.8, \(S(G) \cong P_4 \) but there is no such
\[G\]. So \(G \not\cong\) any tree and hence \(G\) contains a cycle. If \(G\) contains \(C_n, n \geq 4\) then
\(\gamma_r(S(G)) > 2\) and so \(n = 3\). Suppose \(G\) has exactly one pendant vertex then since
\(S(C_3) \cong C_6 \gamma_r(S(G)) \geq 3\) which is a contradiction. So \(G\) has no pendant vertex.
Thus \(G \cong C_3\). Converse is obvious. Upper bound is attained
by \(G \cong K_{1,p-1}(p \neq 2)\).

\begin{remark}
If \(G \cong K_2, \gamma_r(S(G)) = 3 > p + q - \Delta(G)\).
\end{remark}

\begin{corollary}
Let \(G\) be any \((p, q)\) graph having components \(G_1, G_2, \ldots, G_k\) then
\(\gamma_r(S(G)) \leq p + q - (\Delta_1 + \Delta_2 + \cdots + \Delta_k)\) where \(D_i\) is the maximum degree of \(G_i\)
\(\forall i = 1, 2, \ldots, k\). Also the bound is sharp.
\end{corollary}

\begin{proof}
By theorem 5.2.4, for each \(i\), we have \(\gamma_r(S(G_i)) \leq p_i + q_i - \Delta_i\) and hence
the result follows. Bound is attained by a galaxy, none of whose components is \(K_{1,1}\).
\end{proof}

\begin{corollary}
If \(G\) is any connected \((p, q)\)-graph, \(\gamma_r(G) + \gamma_r(S(G)) \leq 2p + q - \Delta(G)\) and the bound is sharp.
\end{corollary}

\begin{proof}
Since \(\gamma_r(G) \leq p\), the result follows from theorem 5.2.4. The bound is attained
if \(G \cong\) star other than \(K_2\).
\end{proof}

\begin{corollary}
If \(G\) is any \((p, q)\)-graph having \(k\) components \(G_i(1 \leq i \leq k)\) then
\(\gamma_r(G) + \gamma_r(S(G)) \leq 2p + q - (\Delta_1 + \Delta_2 + \cdots + \Delta_k)\) where \(\Delta_i\) is the maximum degree
in \(G_i\) \(\forall i\) and the bound is sharp.
\end{corollary}

\begin{proof}
Follows from Corollary 5.2.6. Sharpness follows as in Corollary 5.2.6.
\end{proof}

\begin{theorem}
If \(G\) is any connected graph, \(\frac{p+1}{2} \leq \gamma_r(S(G)) \leq p+q\). Further lower
bound is attained if and only if \(G \cong mK_2 + K_1(m \geq 1)\) and upper bound is attained if
and only if \(G \cong K_2\).
\end{theorem}

137
Proof. Let D be a γ_r-set of $S(G)$ and let $D_1 = D \cap V(G)$ and $D_2 = D - D_1$. Neither $V(G)$ nor $V(S(G)) \setminus V(G)$ can be restrained dominating sets and so $D_1 \neq \emptyset$ and $D_2 \neq \emptyset$. Each vertex in D_1 dominates only one vertex of $V(G)$ and each vertex in D_2 dominates at most 2 vertices of $V(G)$. Hence $|D_1| + 2|D_2| \geq p$. Thus $2\gamma_r(S(G)) = 2(|D|) = |D_1| + (|D_1| + 2|D_2|) \geq |D_1| + p \geq p + 1$ and so $\gamma_r(S(G)) \geq \frac{p+1}{2}$.

Upper bound is obvious since $|V(S(G))| = p + q$.

Clearly lower bound is attained if $G \cong mK_2 + K_1(m \geq 1)$ Conversely, suppose $\gamma_r(S(G)) = \frac{p+1}{2}$. Then $|D_1| + |D_2| = \frac{p+1}{2}$ and hence $2\gamma_r(S(G)) = |D_1| + (|D_1| + 2|D_2|) = p + 1$. But $D_1 \neq \emptyset$ and $|D_1| + 2|D_2| \geq p$ and so $|D_1| + 2|D_2| = p$ and $|D_1| = 1$. Thus D contains one vertex from $V(G)$ say u and $\frac{p-1}{2}$ vertices from $V(S(G)) \setminus V(G)$. $|(V-D) \cap V(G)| = p - 1$ and these $p - 1$ vertices are dominated by $\frac{p-1}{2}$ vertices from $V(S(G)) - V(G)$. Also these $p - 1$ vertices in $V - D$ are adjacent to the corresponding $p - 1$ vertices in $V(S(G)) - V(G)$ which are adjacent to $u \in D$.

Hence $G \cong mK_2 + K_1(m \geq 1)$. Suppose $\gamma_r(S(G)) = p + q$ and $S(G)$ contains a path of length at least 3 or a cycle, then there exists a restrained dominating set of cardinality $p + q - 2$ which is a contradiction. So diam$(S(G)) \leq 2$ and hence $S(G)$ is a star. Clearly $S(G) \cong K_{1,2}$ since no other star can be a subdivision graph of any other graph. Hence $G \cong K_2$. Converse is obvious.

Theorem 5.2.10. Suppose G is a connected (p, q)-graph with $\gamma_r(G)$ = number of pendant vertices. Then $\gamma_r(S(G)) = q$.

Proof. Let S be the set of all pendant vertices of G. By theorem 2.8.8, every vertex in $V - S$ is a support. Let A be the set of all q newly added vertices in $S(G)$ and $B \subset A$ be the set all new supports in $S(G)$. Let $D = S \cup (A - B)$. Clearly D is an independent restrained dominating set. For every $v \in A - B$, $D - \{v\}$ does not dominate v. Thus $\gamma_r(S(G)) = |D| = q$.

138
Theorem 5.2.11. Let $G \cong K_{1,p-1}$ be a connected graph. Then $\gamma_r(S(G)) \leq p + q - (e + s)$ where e denotes the number of pendant vertices of G and s the number of supports of G. Moreover the bound is sharp.

Proof. If $\delta(G) \geq 2$ then $e + s = 0$. Since $\gamma_r(S(G)) \leq p + q$ always, the result follows.

Let v_1, v_2, \ldots, v_e be the pendant vertices of G and u_1, u_2, \ldots, u_s be the supports. Let w_1, w_2, \ldots, w_e be the vertices subdividing the pendant edges of G. If $S \subseteq V(S(G))$ is such that, $V - S = \{u_1, u_2, \ldots, u_s, w_1, w_2, \ldots, w_e\}$ then S is a restrained dominating set of $S(G)$ and so $\gamma_r(S(G)) \leq p + q - (e + s)$. The bound is attained if $G \cong G_1$ where G_1 is given in Fig 5.1.

Corollary 5.2.12. Let $G \cong K_2$ be a connected graph in which every support is adjacent to exactly one pendant vertex. Then $\gamma_r(S(G)) \leq p + q - 2e$ where e denotes the number of pendant vertices of G.

Remark 5.2.13. (i) In corollary 5.2.12, if G is replaced by a tree T then $\gamma_r(S(G)) \leq 2(p - e) - 1$.

(ii) If $G \cong K_2$ is any connected graph, $\gamma_r(G) = \gamma_r(S(G)) = p$ if and only if $G \cong K_{1,p-1}$.
Theorem 5.2.14. If $G \not\cong K_2$ is any graph with $\delta(G) \geq 1, \gamma_r(S(G)) = 2$.

Proof.

Case (i) G does not contain two non-adjacent edges.
In this case $G \cong K_{1,p-1}$ and $\gamma_r(S(G)) = 2$.

Case (ii) G contains two non-adjacent edges.
Let uv and xy be two non-adjacent edges of G and let w and z be the vertices, subdividing these edges respectively. Let $S = \{u, w\} \cdot w$ is adjacent to all vertices of $V(S(G)) - \{u, v\}$ and u is adjacent to v in $S(G)$ so that S is a dominating set in $S(G)$. Similarly z is adjacent to all vertices of $V(S(G)) - \{x, y\}$ and x is adjacent to y. Thus $(V(S(G)) - S)$ has no isolated vertices and hence S is a restrained dominating set of G. Since $\delta(G) \geq 1, \gamma_r(S(G)) \geq 2$ and so S is a minimum restrained dominating set of G. Hence $\gamma_r(S(G)) = 2$. □

Corollary 5.2.15. $\gamma_r(S(G)) + \gamma_r(S(G)) \leq (p+q+2) - \Delta(G)$ and the bound is sharp.

Proof. Inequality follows from theorems 5.2.4 and 5.2.14. Equality holds if $G \cong K_{1,p-1}(p \geq 3)$ and so the bound is sharp. □

Corollary 5.2.16. If $G \not\cong K_2U K_1$ and $\delta(G) = 0$ then $\gamma_r(S(G)) = 1$.

Remark 5.2.17. If $G \cong K_2U K_1$ then $\gamma_r(S(G)) = 2$ and if $G \cong K_2$ then $\gamma_r(S(G)) = 3$.

Theorem 5.2.18. If T is a tree, $\gamma_r(S(T)) = 2p - 3$ if and only if $T \cong P_3$.

Proof. By theorem 1.74, $\gamma_r(T) = p - 2$ if and only if $T \cong P_4, P_5, P_6$ attached with zero or any number of pendant vertices to the supports of the induced path. Here $S(T)$ is a tree with $2p - 1$ vertices and $2p - 2$ edges. Since $2p - 1$ cannot be 4 or 6, we have $2p - 1 = 5$ and so $p = 3$. Hence $T \cong P_3$. Since supports in $S(P_3)$ are the
subdivision points, pendant edges cannot be attached to them.

Converse is obvious.

Theorem 5.2.19. If T is any tree, $\gamma_r(S(T)) \geq \Delta(T) + 1$ and equality holds if and only if T is a star.

Proof. $S(T)$ is also a tree and so by theorem 1.77, $\gamma_r(S(T)) \geq \Delta(S(T)) = \Delta(T)$.

Clearly there can be no tree T with $\gamma_r(S(T)) = \Delta(T)$ and hence $\gamma_r(S(T)) \geq \Delta(T) + 1$.

Suppose $\gamma_r(S(T)) = \Delta(T) + 1$. Let S be a γ_r-set of $S(T)$. Let $v \in V(T)$ with $\deg_T v = \Delta(T)$ and let $N(v) \cap V(T) = \{v_1, v_2, \ldots, v_{\Delta(T)}\}$.

Let $u_1, u_2, \ldots, u_{\Delta(T)}$ be the vertices of $S(T)$ subdividing $vv_1, vv_2, \ldots, vv_{\Delta(T)}$. $v_1, v_2, \ldots, v_{\Delta(T)}$ are all pendant vertices and so $v_1, v_2, \ldots, v_{\Delta(T)} \in S$. Since $\gamma_r(S(T)) = \Delta(T) + 1$, $\text{diam}(S(T)) = 4$ and so $S(T)$ is a spider. Thus T is a star. Converse is obvious.

Theorem 5.2.20. If $T \not\cong K_2$ is any tree with e number of pendant vertices, $\gamma_r(T) \leq p + e - 2$ and the bound is sharp.

Proof. We first prove that $\gamma_r(S(P_p)) \leq p$ except when $p = 2$. By theorem 1.70, $\gamma_r(P_p) = p - 2\lfloor \frac{p-1}{3} \rfloor$ and so $\gamma_r(S(P_p)) = 2p - 1 - 2\lfloor \frac{2p-2}{3} \rfloor$. If $p = 3$ or 4, $\gamma_r(S(P_p)) \leq p$.

If $2p - 2 \equiv 0 \pmod{3}$, $\gamma_r(S(P_p)) \leq p \ \forall p \geq 1$.

If $2p - 2 \equiv 1 \pmod{3}$, $\gamma_r(S(P_p)) \leq p \ \forall p \geq 3$.

If $2p - 2 \equiv 2 \pmod{3}$, $\gamma_r(S(P_p)) \leq p \ \forall p \geq 5$.

Hence $\gamma_r(S(P_p)) \leq p$ except when $p = 2$.

Let T be a tree with the diametrical path of length l. By what we have proved above, it is possible to choose l number of vertices in the path to form a restrained dominating set of $S(P_{l+1})$ say A. Let v be an arbitrary vertex in the diametrical
path and consider a branch of T incident at v. It is not necessary that v lies in A. Let $u \in N(v) \cap V(T)$ and w be the vertex subdividing the edge vu. Considering the branch as a path P' from u of length l_1 we can choose a restrained dominating set of $S(P')$ with cardinality l_1. Repeating this argument for every path, $A \cup A_1 \cup \{w_1\} \cup A_2 \cup \{w_2\} \cup \cdots \cup A_k \cup \{w_k\}$ is a restrained dominating set of $S(T)$ with cardinality $p + e - 2$ where 2 represents the number of pendant vertices in the diametrical path. Thus $\gamma_r(S(T)) \leq p + e - 2$. Bound is attained by P_3. \hfill \Box

Remark 5.2.21. If $T \cong K_2$, $\gamma_r(S(T)) = 3 > p + e - 2$.

For larger trees the bound can be improved.

Theorem 5.2.22. For any nontrivial tree T, $\gamma_r(S(T)) \leq 2\gamma_r(T) - 1$ and the bound is sharp.

Proof. Let $T \cong K_{1,p-1}$. If $p = 2$ then $\gamma_r(K_2) = 2$ and $\gamma_r(S(K_2)) = 3$ so $\gamma_r(S(K_2)) = 2\gamma_r(K_2) - 1$.

If $p \geq 3$ then $\gamma_r(S(T)) = p$ and $\gamma_r(T) = p$ and so $\gamma_r(S(T)) < 2\gamma_r(T) - 1$.

Let $T \cong K_{1,p-1}$ and S be a γ_r-set of T. Then $V - S \neq \emptyset$. If $|S| = k$ then $|V - S| = p - k$. Consider $uv \in \langle E(V - S) \rangle$ and w be the subdivision vertex of uv. Then construct $D = S \cup S'$ where $S' = \{w/w$ is the subdivision vertex of $uv \in \langle E(V - S) \rangle\}$. Now $\langle V(S(T)) \setminus D \rangle$ has no isolated vertices. Obviously D is a restrained dominating set of $S(T)$. Hence $|V - D| \geq 2(p - k)$. So $|D| \leq p + q - 2(p - k) = 2p - 1 - 2p - 2k = 2k - 1$.

So $\gamma_r(S(T)) \leq 2\gamma_r(T) - 1$. Consider $T \cong P_4$. $\gamma_r(S(T)) = 3 = 2\gamma_r(T) - 1$. So the bound is sharp. \hfill \Box
Theorem 5.2.23. If G is a unicyclic graph with cycle C_n and e is the number of pendant vertices in G, $\gamma_r(S(G)) \leq \frac{2(n+2)}{3} + p - n + e$. Moreover the bound is sharp.

Proof. By theorem 1.72, $\gamma_r(S(C_n)) = 2n - 2\left\lfloor \frac{2n}{3} \right\rfloor$. We have $\gamma_r(S(C_n)) = \frac{2n}{3}, \frac{2(n+1)}{3}$ or $\frac{2(n+2)}{3}$ according as $n \equiv 0, 1$ or $2 \pmod{3}$. Thus $\gamma_r(S(C_n)) \leq \frac{2}{3}(n + 2)$. If G is a unicyclic graph which is not a cycle, applying the same argument as in theorem 5.2.20, we have $\gamma_r(S(G)) \leq \frac{2}{3}(n + 2) + (p - n) + e$. The bound is attained by $G \cong C_4$.

5.3 Restrained domination Subdivision number of a graph

We now consider the following problem. Given a graph G, what is the minimum number of edges to be subdivided exactly once so that the restrained domination number of the resulting graph exceeds that of G? So we define,

Definition 5.3.1. Restrained domination subdivision number $Sd_{\gamma_r}(G)$ of a graph G is defined to be the minimum number of edges that must be subdivided exactly once so as to increase the restrained domination number of G.

Example 5.3.2.

(i) $Sd_{\gamma_r}(C_p) = \begin{cases}
1 & \text{if } p \equiv 0 \pmod{3} \text{ or } p \equiv 1 \pmod{3} \\
3 & \text{otherwise.}
\end{cases}$

By theorem 1.73, $\gamma_r(C_p) = k + r$ where $p = 3k + r(0 \leq r \leq 2)$ and hence the above result follows.

(ii) $Sd_{\gamma_r}(P_p) = \begin{cases}
1 & \text{if } p \equiv 1 \pmod{3} \text{ or } p \equiv 2 \pmod{3} \\
3 & \text{otherwise.}
\end{cases}$
By theorem 1.71, \(\gamma_r(P_p) = k + 1 \) if \(p = 3k + 1 \) and \(k + 2 \) if either \(p = 3k \) or \(p = 3k + 2 \).

(iii) \(Sd_r(B(n_1, n_2)) = 1 \). Follows since subdivision of the nonpendant edge increases \(\gamma_r(B(n_1, n_2)) \).

(iv) \(Sd_r(K_p) = 1 \). Follows since subdivision of any edge increases \(\gamma_r(K_p) \) to 2.

Remark 5.3.3. Since \(\gamma_r(K_{1,p-1}) \) is \(p \), \(Sd_r(K_{1,p-1}) \) is not defined.

Example 5.3.4. \(Sd_r(K_{m,n}) = 1 \) if \(2 \leq m \leq n \).

Let \(X = \{u_1, u_2, \ldots, u_m\} \) and \(Y = \{v_1, v_2, \ldots, v_n\} \) be the bipartition of \(G \cong K_{m,n} \).

Let the edge \(u_1v_1 \) be subdivided by \(w_1 \) and let \(G' \) be the resulting graph. For \(1 \leq i \leq m \) and \(1 \leq j \leq n \), \(S = \{u_i, v_j\} \) is a \(\gamma_r \)-set of \(G \) but \(S \) will not dominate \(w_1 \) in \(G' \) if \(i \neq 1 \) and \(j \neq 1 \). If \(i = 1 \) and \(j = 1 \) then \(w_1 \) has no neighbor in \(V - S \). If \(i = 1 \) and \(j \neq 1 \) or vice versa, then \(v_1 \) or \(u_1 \) is not dominated accordingly and so \(\gamma_r(G') = 3 \). Thus \(Sd_r(K_{m,n}) = 1 \).

Theorem 5.3.5. If \(G \) is any graph with \(\Delta(G) = p - 1 \) and \(\delta(G) \geq 2 \), then \(Sd_r(G) = 1 \).

Proof. Clearly \(\gamma_r(G) = 1 \). Let \(\deg u = p - 1 \). Let \(uv \in E(G) \) and \(w \) be the vertex that subdivided \(uv \). If \(G' \) is the resulting graph, \(\gamma_r(G') = 2 \) since now \(u \) and \(v \) are non-adjacent and \(w \) is adjacent only to \(u \) and \(v \). Hence \(Sd_r(G) = 1 \).

Theorem 5.3.6. Let \(G \) be a connected graph such that \(\delta(G) = 1, G \not\cong K_{1,p-1} \) and \(\gamma_r(G) = \text{number of pendant vertices} \). Then \(Sd_r(G) = 1 \).

Proof. By theorem 2.8.8, every nonpendant vertex is a support. By hypothesis \(G \not\cong K_{1,p-1} \) and \(G \) has at least 2 supports. Subdividing the edge joining any two supports increases \(\gamma_r(G) \) by 1 and so \(Sd_r(G) = 1 \).
Theorem 5.3.7. Let G be a connected bipartite graph with bipartition (X, Y) where $|X| = m, |Y| = n, 3 \leq m \leq n$. If there exists two vertices $u \in X, v \in Y$ with respective degrees n and m, $Sd_{\gamma_r}(G) = 1$ if and only if G is not isomorphic to the graph given in Fig. 5.2.

Proof. Suppose $Sd_{\gamma_r}(G) = 1$ and G is isomorphic to a graph of type given in Fig. 5.2. Let $Y = \{v, v_1, v_2, \ldots, v_n\}$ and A be the set of pendant vertices of G. We have $\gamma_r(G) = |A| + 2$. Let e be the edge which is subdivided and G' be the resulting graph. If $e = uv$, $A \cup \{u, v\}$ is a γ_r-set of G'. If $e = uv_1, A \cup \{u_1, v_1\}$ is a γ_r-set of G'. If $e = u_1v_1(i \geq 2), A \cup \{u_1, v_1\}$ is a γ_r-set of G'. If $e = u_1v_1$ or u_2v_1 then $A \cup \{u_1, u_2\}$ is a γ_r-set of G'. Thus subdivision of any single edge does not change $\gamma_r(G)$ and so $Sd_{\gamma_r}(G) \neq 1$ which is a contradiction.

Conversely suppose that G is not isomorphic to the graph given in Fig. 5.2.

Case (i) $\delta(G) \geq 2$.

In this case $S = \{u, v\}$ is a γ_r-set of G and so $\gamma_r(G) = 2$. Let G' be the graph obtained by subdividing the edge uv and let w be the subdividing vertex. Clearly S is not a restrained dominating set of G'. Let S' be a restrained dominating set of G'.

If $w \in S'$, $|S'| \geq 3$. Since $N(w) = \{u, v\}$, S' can contain exactly one of u or v. Without loss of generality let $u \in S'$. Since $|X| \geq 3$, S' should contain at least one
vertex from $Y - \{u\}$ but in this case v will not be dominated. Hence $\gamma_r(G') \geq 3$ and so $\text{Sd}_{\gamma_r}(G) = 1$.

Case (ii). $\delta(G) = 1$.

Let A be the set of pendant vertices of G and let $B = V(G) \setminus (A \cup \{u, v\})$. Clearly $|B| \neq 1$.

Subcase (i). $|B| = 0$.

Now G is a bistar and the theorem follows by example 5.3.2

Subcase (ii). $|B| = 2$.

Let $b_1 \in B \cap X$ and $b_2 \in B \cap Y$. $A \cup \{b_1\}(A \cup \{b_2\})$ is a restrained dominating set of G if either both u and v are supports or u alone is a support (v alone is a support). Hence $\gamma_r(G) = |A| + 1$. Let G' be the graph obtained by subdividing the edge uv by the vertex w and let S' be a γ_r-set of G'. Clearly $A \cup \{w\}$ is not a γ_r-set of G'. Since $\deg_{G'} w = 2$, S' contains exactly one of u or v. If $u \in S'$, $A \cup \{u\}$ does not dominate b_1 and if $v \in S'$, $A \cup \{v\}$ does not dominate b_2. Hence $|S'| > |A| + 1$ and so $\text{Sd}_{\gamma_r}(G) = 1$.

Subcase (iii). $|B| \geq 3$.

$A \cup \{u, v\}$ is a restrained dominating set of G and hence $\gamma_r(G) \leq |A| + 2$. If $\gamma_r(G) = |A|$ then by theorem 5.3.6, $\text{Sd}_{\gamma_r}(G) = 1$. If $\gamma_r(G) = |A| + 1$ then either $|B \cap X| = 1$ or $|B \cap Y| = 1$. If $|B \cap X| = 1$ then $|B \cap Y| \geq 2$ and u is a support. $u_1 \in B \cap X$ is a vertex of full degree in $\langle B \rangle$. Subdividing an edge e in $\langle B \rangle$ increases $\gamma_r(G)$ and so $\text{Sd}_{\gamma_r}(G) = 1$.

Suppose $\gamma_r(G) = |A| + 2$. Also let both u and v be supports. In this case if either $|B \cap X| = 1$ or $|B \cap Y| = 1$ then $\langle B \rangle$ has a vertex of full degree and so $\gamma_r(G) = |A| + 1$.
which is a contradiction and so \(|B \cap X| \geq 2, |B \cap Y| \geq 2\). If there exists a \(\gamma_r\)-set of \(G\), containing only vertices of \(B \cap X\) or \(B \cap Y\) (other than pendant vertices) say \(B \cap X\) then \(|B \cap X| = 2\) and \(|B \cap Y| \geq 2\). Subdividing edge \(uv\) increases \(\gamma_r(G)\). If there exists no such \(\gamma_r\)-set let \(e = ua_1\) where \(a_1 \in B\). Let \(G'\) be the graph obtained by subdividing \(e\). Let \(S'\) be a \(\gamma_r\)-set of \(G'\). Without loss of generality let \(u \in S'\). In order to dominate \(a_1\), a vertex of \(B \cap X\) should be included in \(S'\) but now other vertices of \(B \cap X\) are not dominated. Hence \(\gamma_r(G') \geq |A| + 3\). So \(Sd_{\gamma_r}(G) = 1\).

Suppose one of \(u\) or \(v\) say \(u\) is a support. If \(|B \cap X| \geq 2, |B \cap Y| \geq 2\) and there exists a restrained dominating set of \(G\) containing only the vertices of \(B \cap X\) along with pendant vertices then \(|B \cap X| = 2\). In this case there can be no \(\gamma_r\)-set of \(G\) containing only vertices of \(B \cap Y\) along with the pendant vertices, since \(v\) will not be dominated. Now conclusion follows as discussed earlier.

Now, \(|B \cap X| = 1\) and \(|B \cap Y| \geq 2\) is not possible since \(|X| \geq 3\). So \(|B \cap Y| = 1\) and \(|B \cap X| \geq 2\). Also \(|B \cap X| \neq 2\) since such a graph is isomorphic to a graph given in Fig. 5.2. So \(|B \cap X| \geq 3\). Let \(u_1, u_2, u_3, \ldots \in B \cap X\) and \(v_1 \in B \cap Y\). Let \(e = uv_1\) and let \(G'\) be the graph obtained by subdividing \(e\). Let \(S'\) be a \(\gamma_r\)-set of \(G'\). \(v_1\) is of full degree in \(\langle B \rangle\). We observe that \(A \cup C\) is not a restrained dominating set of \(G'\) for any two element subset of \(G'\)

So \(|S'| \geq |A| + 3\). Hence \(Sd_{\gamma_r}(G) = 1\).

Theorem 5.3.8. Let \(G\) be a complete \(m\)-partite graph \(K(n_1, n_2, \ldots, n_m)\) where \(n_1 \leq n_2 \leq \cdots \leq n_m\) and \(m \geq 3\). Then

\[
Sd_{\gamma_r}(G') = \begin{cases}
1 & \text{if } n_1 = 1 \\
2 & \text{otherwise}
\end{cases}
\]

Proof. If \(n_1 = 1\), \(\gamma_r(G) = 1\). Hence subdivision of any edge increases \(\gamma_r(G)\) and so \(Sd_{\gamma_r}(G) = 1\). Suppose \(n_1 \geq 2\). Let \(V_1, V_2, \ldots, V_m\) be the \(m\) partite sets of \(G\) and
let \(\{u_k, v_k\} \subseteq V_k \) for all \(k \) such that \(1 \leq k \leq m \). Let \(e = u_iu_j (1 \leq i, j \leq m) \) be any edge of \(G \) and let \(G' \) be the graph obtained by subdividing \(e \). Now \(\{u_i, u_k\} (k \neq j) \) is a \(\gamma_r \)-set of \(G' \) and so \(Sd_{\gamma_r}(G) \geq 2 \). If in addition \(e' = v_iv_j \) is subdivided, there is no 2-element restrained dominating set of \(G' \) and so \(Sd_{\gamma_r}(G) \leq 2 \).

Thus \(Sd_{\gamma_r}(G) = 2 \).

\[\square \]

Theorem 5.3.9. Let \(T \) be any tree such that \(T \not\cong K_2 \). Then \(Sd_{\gamma_r}(T) = 1 \) if and only if \(T \cong K_{1,p-1}(p-1 \geq 2) \), \(B(1,n)(n \geq 1) \) or \(P_5 \).

Proof. Suppose \(T \cong K_{1,p-1}(p-1 \geq 2) \).

When \(p-1 = 2 \), \(T \cong K_{1,2} \) and \(\bar{T} \cong K_1 \cup K_2 \) and so \(\gamma_r(\bar{T}) = 3 \). When the edge in \(\bar{T} \) is subdivided, \(\gamma_r(\text{resulting graph}) = 4 \). So \(Sd_{\gamma_r}(\bar{T}) = 1 \). Now \(T \cong K_{1,p-1}(p-1 \geq 3) \).

Let \(v \) be the central vertex of \(T \) and let \(N(v) = \{v_1, v_2, \ldots v_{p-1}\} \). Then \(\bar{T} \cong K_1 \cup K_{p-1} \) and so \(\gamma_r(\bar{T}) = 2 \). By example 5.3.2 (iv), it follows that \(Sd_{\gamma_r}(\bar{T}) = 1 \). Now suppose \(T \cong B(1,n)(n \geq 1) \). If \(n = 1, T \cong P_4, \bar{T} \cong P_4 \) and by example 5.3.2 (ii) we have \(Sd_{\gamma_r}(\bar{T}) = 1 \). Let \(n > 1 \) and let \(u \) and \(v \) be the supports with \(\deg u = 2 \) and \(\deg v = n + 1(n > 1) \). Let \(u_1 \in N(u) \) and \(N(v) \setminus \{u\} = \{v_1, v_2, \ldots, v_n\} \) and let \(S \) be any \(\gamma_r \)-set of \(\bar{T} \). Clearly \(|S| = 2 \) and \(v \in S \). Let \(T' \) be the graph obtained by subdividing the edge \(v_1v_2 \) by the vertex \(w \) in \(\bar{T} \). \(\{v, w\} \) does not dominate \(u \) in \(T' \) and so any \(\gamma_r \)-set of \(T' \) contains either \(v_1 \) or \(v_2 \). But \(\{v, v_1\} \) and \(\{v, v_2\} \) are not \(\gamma_r \)-sets of \(T' \) since \(v_2 \) and \(v_1 \) are not dominated by the respective sets. Both \(\{v_1, u_1\} \) and \(\{v_2, u_1\} \) are not restrained sets as \(v \) is an isolated vertex in \(\langle V - \{v_1, u_1\} \rangle \) and \(\langle V - \{v_2, u_1\} \rangle \). \(\{v_1, u\} \) and \(v_2, u \) do not dominate \(v \). Hence \(\gamma_r(T') \geq 3 \) and so \(Sd_{\gamma_r}(\bar{T}) = 1 \).

Suppose \(T \cong P_5 \). Let \(u \) and \(v \) be the supports and \(u_1 \) and \(v_1 \) be the respective pendants. Let \(w \) be the subdividing vertex of the edge \(u_1v_1 \). Let \(T' \) be the resulting graph. No two element subset of \(V(T') \) is a \(\gamma_r \)-set of \(T' \) and hence \(Sd_{\gamma_r}(\bar{T}) = 1 \).
Conversely suppose $\text{Sd}_{\gamma_r}(\bar{T}) = 1$ and $T \not\cong K_{1,p-1}(p-1 \geq 2)$, $B(1,n)(n \geq 1)$ and P_5. Then T has at least 2 distinct supports.

Case (i). T has exactly 2 supports which are adjacent.

Now $T \cong B(m,n)(m,n \geq 2)$. Let u and v be the supports and let $N(u) \setminus \{v\} = \{u_1, u_2, \ldots, u_m\}$ and $N(v) \setminus \{u\} = \{v_1, v_2, \ldots, v_n\}$. Let K_m and K_n be the complete graphs induced by $\{u_1, u_2, \ldots, u_m\}$ and $\{v_1, v_2, \ldots, v_n\}$ respectively. Then, $\bar{T} \cong (K_m + K_n) \cup \{uv_i(1 \leq i \leq n)\} \cup \{vu_j(1 \leq j \leq m)\} \cup \{u_jv_i(1 \leq i \leq n) \text{ and } 1 \leq j \leq m\}$. If $e \in E(K_m)(E(K_n))$ then $e = u_iv_juv_i$ and let $a_{ij}(b_{ij})$ be the vertex subdividing e. Now $\{u_i, v_k\}(\{v_i, u_k\})$ where $1 \leq k \leq n(1 \leq l \leq m)$ is a γ_r-set of the resulting graph. If $e = u_iv_j$ and if c_{ij} is the vertex subdividing e then $\{u_i, u\}$ is a γ_r-set of the resulting graph. If $e = uv_jvu_j$ and if $w_j(w_k)$ is the vertex subdividing e, then $\{w_j, u_i\}, (\{w_k, v_k\})$ where $1 \leq i \leq m(1 \leq k \leq n)$ is a γ_r-set of the resulting graph. Thus we have proved that subdivision of a single edge does not increase $\gamma_r(\bar{T})$.

Hence $\text{Sd}_{\gamma_r}(\bar{T}) > 1$ which is a contradiction.

Case (ii). T has exactly 2 supports which are non-adjacent.

Let $d(u,v) = 2$. Since $T \not\cong P_5$ either $\deg u \geq 3$ or $\deg v \geq 3$ Let $\deg v \geq 3$. Let $u_1 \in N(u)$ with $\deg u_1 = 1$ and let $v_1, v_2, \ldots, v_n \in N(v)$ with $\deg v_j = 1 \forall j (1 \leq j \leq n)$. Let $x \in N(u) \cap N(v)$. When any edge of \bar{T} is subdivided the resulting graph is T'. When the edges $v_ju_1, v_ju, v_jx, v_jv_i$ are subdivided then $\{u_1, v_k(k \neq j)\}$, $\{u, v_k(k \neq j)\}$, $\{u_1, v_j\}$ and $\{v_i, u_1\}$ are the γ_r-sets of T' respectively. When the edges u_1x, u_1v are subdivided then $\{u_1, v_j\}$, $\{v, v_j\}$ are the respective γ_r-sets of T'.

If uv is subdivided then $\{v, v_j\}$ is a γ_r-set of T'. Now let $d(u,v) \geq 3$. Suppose $d(u,v) = k \geq 3$. Let $u = w_1, w_2, w_3, \ldots, w_{k+1} = v$ be the $d(u,v)$ path in T. Let $u_i (i \geq 1)$ and $v_j (j \geq 1)$ be the pendant neighbors of u and v respectively. When the edges $u_iv_j, u_iv, u_iw_k, u_iw_l(2 \leq l \leq k-1)$, are subdivided then $\{u_i, w_3\}, \{v, v_1\}$,
\{u, u_1\}, \{u, v\} are the respective \(\gamma_r\)-sets of \(T'\). When \(uv, uw, s > 2\) are subdivided, then \(\{u, u_1\}\) is a \(\gamma_r\)-set of \(T'\). When the edge \(w_iw_j\), where \(i < j\), \(i\) and \(j\) are non-consecutive, is subdivided, then \(\{w_i, u_l\}\) or \(\{w_i, u_t\}\) where \((1 \leq l \leq m)\) and \((1 \leq t \leq n)\) is a \(\gamma_r\)-set of \(T'\) according as \(i \neq 2\) or \(i \neq k\). By symmetry, we can conclude that subdivision of any single edge doesn’t increase \(\gamma_r(T)\). Hence \(Sd_{\gamma_r}(\bar{T}) > 1\), which is a contradiction.

Case (iii). Let \(T\) have at least 3 supports.

Let \(a, b, c\) be any three supports and let \(a_i \in N(a), b_j \in N(b), c_k \in N(c)\) for \(1 \leq i \leq m, 1 \leq j \leq n, 1 \leq k \leq l\) where each \(a_i, b_j, c_k\) are of degree 1.

When any one of the edges in \(\bar{T}\) is subdivided the resulting graph is \(T'\). Let \(x\) and \(y\) be any 2 vertices which are neither supports nor pendant vertices.

If the edges \(a_i a_s, a_i b_j, a_i x, a_i b\) are subdivided then \(\{a_i, b_j\}, \{a_i, a\}, \{a_i, c_k\}, \{b, b_j\}\) are the \(\gamma_r\)-sets of \(T'\) respectively. If \(ab, ax\) are subdivided then \(\{a_i, a\}\) is a \(\gamma_r\)-set of \(T'\). Suppose \(xy\) is subdivided.

Since \(T\) is a tree, there exists at least one support which is non-adjacent to either \(x\) or \(y\). Without loss of generality let us assume that \(a \notin N(x)\). Then \(\{x, a_i\}\) a \(\gamma_r\)-set of \(T'\). By symmetry, we can conclude that subdivision of any single edge doesn’t increase \(\gamma_r(\bar{T})\). Hence \(Sd_{\gamma_r}(\bar{T}) > 1\), which is a contradiction. Hence the result follows.

Theorem 5.3.10. Let \(G\) be a graph with a pendant edge \(uv\) where \(\deg u = 2\) and \(\deg v = 2\). If \(u\) is \(\gamma_r\) totally free, \(Sd_{\gamma_r}(G) = 1\).

Proof. Let \(S\) be any \(\gamma_r\)-set of \(G\). Since \(u\) is \(\gamma_r\) totally free, \(u \in V - S\). Hence \(N(u) \cap S = \{v\}\) and there exists \(w \in N(u) \cap (V - S)\). When the edge \(uv\) is subdivided by \(x\), by choice of \(u\), there is no set with cardinality \(\gamma_r(G)\) that is a restrained dominating set of the resulting graph. Thus \(Sd_{\gamma_r}(G) = 1\).
Theorem 5.3.11. If the set of all edges incident to a vertex v in a graph G is a Sd_{γ_r}-set of G and $\delta(G) \geq 2$ then $v \notin V^-$.

Proof. Let F be the set of all edges incident at v such that F is a Sd_{γ_r}-set of G. Let G' be the graph obtained after subdividing all the edges of F. By hypothesis $\gamma_r(G') > \gamma_r(G)$. Suppose $v \in V^-$. Then $\gamma_r(G \setminus v) < \gamma_r(G)$ and let D be a γ_r-set of $G \setminus v$, so that $S = D \cup \{v\}$ is a γ_r-set of G. By theorem 4.2.2, v is an isolated vertex or $N(v) \cap (V - S) = \emptyset$ or $pn[v; S] = \{v\}$. Since F is nonempty, v is not an isolated vertex. Suppose $pn[v; S] = \{v\}$. Let $v_i (1 \leq i \leq k)$ be the vertices in $N(v) \cap (V - S)$ and let w_i be the vertices subdividing the edges v_i. Now $D \cup \{v\}$ is a restrained dominating set of G', since $w_i (1 \leq i \leq k)$ are dominated by v and each w_i has corresponding neighbors in $V - S$. Thus $\gamma_r(G') \leq \gamma_r(G)$ which is a contradiction.

Suppose $N(v) \cap (V - S) = \emptyset$. Then all $v_i (1 \leq i \leq k)$ of $N(v)$ lie in S. We claim that $D \cup \{w_j\}$ for any $j \geq 1 \leq j \leq k$ is a restrained dominating set of G'. Now w_j dominates v and every $w_i (i \neq j)$ is dominated by the corresponding v_i. Every $w_i i \neq j$ has a common neighbor v in $\langle V - (D \cup \{w_j\}) \rangle$.

Since $\delta(G) \geq 2$, there exists at least one w_i in $\langle V - D \cup \{w_j\} \rangle$ which is a neighbor of v in $\langle V - D \cup \{w_j\} \rangle$ in G'. So our claim is true. But then $\gamma_r(G') \leq \gamma_r(G)$ and so $v \notin V^-$. \qed