Preliminaries

In this chapter we collect the basic definitions and theorems which are needed for the subsequent chapters. For graph theoretic terminology, we refer to Harary [22], Parthasarathy [28], Chartrand and Lesniak [20] and Bondy and Murty [16].

Definition 1.1. A graph G is a finite non-empty set of objects called vertices together with a set of unordered pairs of distinct vertices of G, called edges. The vertex set and the edge set of G are denoted by $V(G)$ and $E(G)$ respectively.

If $e = \{u, v\}$ is an edge, we write $e = uv$; we say that e joins the vertices u and v; u and v are adjacent vertices; u and v are incident with e.

If two vertices are not joined, then we say that they are non-adjacent. If two distinct edges are incident with a common vertex, then they are said to be adjacent to each other.

Definition 1.2. The cardinality of the vertex set of a graph G is called the order of G and is denoted by p. The cardinality of its edge set is called the size of G and is denoted by q. A graph with p vertices and q edges is called a (p, q)-graph.

Definition 1.3. A graph G_1 is isomorphic to a graph G_2 if there exists a bijection ϕ from $V(G_1)$ to $V(G_2)$ such that $uv \in E(G_1)$ if and only if $\phi(u)\phi(v) \in E(G_2)$. If G_1 is isomorphic to G_2, we write $G_1 \cong G_2$.
Definition 1.4. A graph H is called a subgraph of a graph G if $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$. A spanning subgraph of G is a subgraph H with $V(H) = V(G)$. For any set S of vertices of G, the induced subgraph (S) is the maximal subgraph of G with vertex set S. Thus two vertices of S are adjacent in (S) if and only if they are adjacent in G. (S) is also denoted by $G[S]$.

Notation 1.5. Let v be a vertex of a graph G. The induced subgraph $(V(G) \setminus \{v\})$ is denoted by $G - v$; it is the subgraph of G obtained by the removal of v and edges incident with v. If $e \in E(G)$, the spanning subgraph with edge set $E(G) \setminus \{e\}$ is denoted by $G - e$; it is the subgraph of G obtained by the removal of e.

Definition 1.6. The degree of a vertex v in a graph G is the number of edges of G incident with v and is denoted by $\deg_G v$ or $\deg v$. The minimum and maximum degrees of vertices of G are denoted by δ and Δ respectively. A vertex of degree 0 in G is called an isolated vertex; a vertex of degree 1 is called a pendant vertex or an end vertex of G. Any vertex which is adjacent to a pendant vertex is called a support.

Definition 1.7. A graph G is regular of degree r if every vertex of G has degree r. Such graphs are called r-regular graphs. Any 3-regular graph is called a cubic graph.

Definition 1.8. A graph G is complete if every pair of its vertices are adjacent. A complete graph on p vertices is denoted by K_p.
Definition 1.9. The complement \overline{G} of a graph G is the graph with vertex set $V(G)$ such that two vertices are adjacent in \overline{G} if and only if they are not adjacent in G.

Definition 1.10. A bipartite graph is a graph whose vertex set $V(G)$ can be partitioned into two subsets V_1 and V_2 such that every edge of G has one end in V_1 and the other end in V_2; (V_1, V_2) is called a bipartition of G. If further, every vertex of V_1 is joined to all the vertices of V_2, then G is called a complete bipartite graph. The complete bipartite graph with bipartition (V_1, V_2) such that $|V_1| = m$ and $|V_2| = n$ is denoted by $K_{m,n}$.

Definition 1.11. Let u and v be (not necessarily distinct) vertices of a graph G. A u-v walk of G is a finite, alternating sequence $u = u_0, e_1, u_1, e_2, \ldots, e_n, u_n = v$ of vertices and edges beginning with vertex u and ending with vertex v such that $e_i = u_{i-1}u_i$, $i = 1, 2, \ldots, n$. The number n is called the length of the walk. The walk is said to be open if u and v are distinct vertices; it is closed otherwise. A walk $u_0, e_1, u_1, e_2, u_2, \ldots, e_n, u_n$ is determined by the sequence $u_0, u_1, u_2, \ldots, u_n$ of its vertices and hence we specify this walk by $(u_0, u_1, u_2, \ldots, u_n)$. A walk in which all the edges are distinct is called a trail. A walk in which all the vertices are distinct is called a path. A closed walk $(u_0, u_1, u_2, \ldots, u_n)$ in which $u_0, u_1, u_2, \ldots, u_{n-1}$ are distinct is called a cycle. A path on n vertices is denoted by P_n and a cycle on n vertices is denoted by C_n.

Definition 1.12. A graph G is said to be connected if any two distinct vertices of G are joined by a path. A maximal connected subgraph of G
is called a *component* of G. Thus a disconnected graph has at least two components.

The *distance* $d(u, v)$ between two vertices u and v in G is the length of a shortest path joining them if any; otherwise $d(u, v) = \infty$. A shortest u-v path is often called a *geodesic*. The *diameter* $d(G)$ of a connected graph G is the length of any longest geodesic.

Definition 1.13. Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be any two graphs. Then *union* of G_1 and G_2 is the graph $G = G_1 \cup G_2$ with vertex set $V = V_1 \cup V_2$ and edge set $E = E_1 \cup E_2$.

The *join* of G_1 and G_2 is the graph $G = G_1 + G_2$ with vertex set $V = V_1 \cup V_2$ and edge set $E = E_1 \cup E_2 \cup \{uv : u \in V_1, v \in V_2\}$.

The graph $K_1 + C_p$ ($p \geq 3$) is called a *wheel* and is denoted by W_p.

The *Cartesian product* $G_1 \times G_2$ of two graphs G_1 and G_2 is defined to be the graph whose vertex set is $V_1 \times V_2$ and two vertices $u = (u_1, u_2)$ and $v = (v_1, v_2)$ in $V = V_1 \times V_2$ are adjacent in $G_1 \times G_2$ if either $u_1 = v_1$ and u_2 is adjacent to v_2 or $u_2 = v_2$ and u_1 is adjacent to v_1.

The *composition* $G = G_1[G_2]$ is the graph with vertex set $V_1 \times V_2$ and $u = (u_1, u_2)$ is adjacent to $v = (v_1, v_2)$ whenever u_1 is adjacent to v_1 or $u_1 = v_1$ and u_2 is adjacent to v_2.

The *Kronecker* product of G_1 and G_2 is the graph $G = G_1 \times G_2$ with vertex set $V_1 \times V_2$ and edge set $E = \{(u_1, u_2), (v_1, v_2) : (u_1, v_1) \in E_1 \text{ and } (u_2, v_2) \in E_2\}$.
Definition 1.14. A vertex v of a graph G is called a *cut-vertex* of graph G if the removal of v increases the number of components. An edge e of a graph G is called a *cut edge* or *bridge* if the removal of e increases the number of components. A set of edges S is called an *edge cut of G* if the number of components of $G - S$ is greater than that of G. A *block* of a graph is a maximal connected, non-trivial subgraph without cut-vertices.

Definition 1.15. A graph is *acyclic* or a *forest* if it has no cycles. A *tree* is a connected acyclic graph. A forest in which every component is a path is called a *linear forest*.

Definition 1.16. The graph got from G by removing isolated vertices and pendant vertices is called the *foundation* of G and is denoted by Z_G.

If T is not a path but Z_T is a path then T is called a *caterpillar*.

If T is not a caterpillar but Z_T is a caterpillar then T is called a *lobster*.

Definition 1.17. The *connectivity* $\kappa = \kappa(G)$ of a graph G is the minimum number of vertices whose removal results in a disconnected graph or K_1, the trivial graph. The *line connectivity* or *edge connectivity* $\kappa' = \kappa'(G)$ of a graph G is the minimum number of edges whose removal results in a disconnected graph.

Definition 1.18. In a graph G, any closed trail containing all vertices and edges of G is called an *Eulerian trail*. A graph G is said to be *Eulerian* if it has an Eulerian trail.
Definition 1.19. A graph G is called *Hamiltonian* if it has a spanning cycle. Any spanning cycle of G is called a *Hamiltonian cycle*.

Definition 1.20 [2]. A *factor* of a graph G is a spanning subgraph of G which is not totally disconnected. If G is the edge disjoint union of a set of its factors, then such a union is called a *factorization* of G. An *n-factor* is a regular factor of degree n. If G is a union of n-factors then G is said to be *n-factorable*.

Definition 1.21. The minimum number of edge-disjoint spanning linear forests into which G can be decomposed is called *linear arboricity* of G and is denoted by $r(G)$.

Definition 1.22. A set of vertices in G is said to be *independent* if no two of them are adjacent. The largest number of vertices in any independent set of G is called the *independence number* of G and is denoted by β_0.

Definition 1.23. A vertex and an edge are said to *cover* each other if they are incident. A set of vertices which cover all the edges of a graph G is called a *vertex cover* of G. The smallest number of vertices in any vertex cover is called the *vertex covering number* and is denoted by α_0.

Definition 1.24. A *colouring* of a graph G is an assignment of colours to its vertices so that no two adjacent vertices have the same colour. The *chromatic number* $\chi(G)$ is defined to be the minimum n for which G has n-colouring.
Definition 1.25. An edge-colouring of a graph G is an assignment of colours to its edges so that no two adjacent edges are assigned the same colour. The edge-chromatic number $\chi'(G)$ is the minimum n for which G has n-edge colouring.

Definition 1.26 [17]. A decomposition of a graph G is a collection of subgraphs of G whose edge sets partition the edge set of G. The subgraphs of the decomposition are called the parts of the decomposition.

Definition 1.27. A graph G is said to be F-decomposable or F-packable if G has a decomposition in which all of its parts are isomorphic to the graph F.

Given a graph G which is F-packable, the task of actually performing a packing of copies of F into G will be easier if G has the property that every collection of edge-disjoint copies of F in G can be extended to a F-packing of G. This motivated Ruiz [30] to introduce the concept of randomly F-packable graph.

Definition 1.28. A graph G is said to be randomly F-packable if for every proper F-packable subgraph H of G, $G - E(H)$ is also F-packable.

The problem of characterizing randomly F-packable graphs for arbitrary F seems to be a difficult problem. Ruiz [30] obtained a characterization of randomly F-packable graphs when F is P_3 or $2K_2$.

Theorem 1.29 [30]. A graph is randomly P_3-packable if and only if it is one of the following: C_4, K_4, $2K_3$, $K_3 \cup K_{1,3}$, $2K_{1,n}$ or $2nK_2$ ($n \geq 1$).
Theorem 1.30 [30]. A graph G is randomly $K_{1,2}$-packable if and only if each component of G is isomorphic to C_4 or $K_{1,2t}$.

Barrientos et al. [9] obtained a characterization of randomly $K_{1,r}$-packable graphs.

Theorem 1.31 [9]. For $r \geq 2$, a connected graph G is randomly $K_{1,r}$-packable if and only if either it is $K_{r,r}$ or it is bipartite with all degrees in one partite set being multiples of r and all degrees in other set being less than r.

Beineke et al. [10] obtained a characterization of randomly F-packable graphs when F is either K_n, P_4, P_5 or P_6. They also characterized randomly tK_2-packable graphs with sufficiently many edges.

Theorem 1.32 [10]. A graph G is randomly K_n-packable if and only if every edge lies in precisely one copy of K_n in G.

Theorem 1.33 [10]. The only connected randomly P_4-packable graphs are P_4, K_4, $K_{2,3}$, C_6 and $C_3 \circ C_3$ where $C_3 \circ C_3$ is the graph obtained by identifying one vertex from each copy of C_3.

Theorem 1.34 [10]. The only connected randomly P_5-packable graphs are P_5, $K_{2,4}$, $C_4 \circ C_4$, C_8 and $S_4^{(k)}$ for $k \geq 2$ where $S_4^{(r)}$ denotes the graph obtained from r paths of length $2k$ by identifying their central vertices.

Theorem 1.35 [10]. The only connected randomly P_6-packable graphs are P_6, C_{10} and the three graphs in Figure 1.1.
Theorem 1.36 [10]. A graph G having at least $2t^3 - t^2$ edges is randomly tK_2-packable if and only if it is either tnK_2 or $tK_{1,n}$ where $n \geq 1$.

Sumner [32] considered a different form of random packing, in which every partial matching is extendible to a full one.

Definition 1.37. Let $G = (V, E)$ be a graph. A difference labeling of G is an injection f from V to the set of non-negative integers together with the weight function f^* on E given be $f^*(uv) = |f(u) - f(v)|$ for every edge uv in G.

Definition 1.38. A decomposition of a labeled graph into parts each part containing the edges having a common weight is called a common-weight decomposition.

Bloom and Ruiz [13] have proved the following theorems.
Theorem 1.39 [13]. Every part in a common-weight decomposition is a linear forest. Further the vertices of minimum and maximum labels are not internal vertices in any path of a part containing it.

Theorem 1.40 [13]. There is a labeling of a cycle C realizing a decomposition of C into parts having m_1 and m_2 edges respectively if and only if m_1 and m_2 are relatively prime.

Theorem 1.41 [13]. A labeling exists for every cycle with $2s$ edges ($s \neq 4$) which decomposes it into two perfect matchings.

Theorem 1.42 [13]. A connected graph of maximum degree 3 and diameter 2 cannot have a common-weight decomposition in which all of the component paths in every part have length greater than 2.

Definition 1.43 [13]. A common-weight decomposition of G in which each part contains m edges is called m-equitable.

Theorem 1.44 [14]. Let C be a cycle having $(m_1 + m_2 + \cdots + m_k)$ edges with $k > 2$. There is a labeling that will produce a common-weight decomposition of C into paths $P_{m_1+1}, \ldots, P_{m_k+1}$.

Definition 1.45. For any graph G, G^+ is the graph obtained from G by adjunction of a vertex v' for every vertex v in G and joining v and v'.

Akers and Krishnamoorthy [3] introduced the n-star graph S_n which has been as an attractive alternative to the n-cube, with superior characteristics.
Definition 1.46 [3]. The n-star graph S_n is a simple graph whose vertex set is the set of all $n!$ permutations of \{1, 2, \ldots, n\} and two vertices α and β are adjacent if and only if $\alpha(1) \neq \beta(1)$ and $\alpha(i) \neq \beta(i)$ for exactly one i, $i \neq 1$.

Acharya and Sampathkumar [1] introduced the concept of graphoidal cover.

Definition 1.47. A graphoidal cover of a graph G is a collection ψ of (not necessarily open) paths in G satisfying the following conditions.

(i) Every path in ψ has at least two vertices.

(ii) Every vertex of G is an internal vertex of at most one path in ψ.

(iii) Every edge of G is in exactly one path in ψ.

The minimum cardinality of a graphoidal cover of G is called the graphoidal covering number of G is denoted by $\eta(G)$.

Pakkiam and Arumugam [26, 27] determined the graphoidal covering number of several families of graphs.

Arumugam and Suresh Suseela [7] introduced the concept of acyclic graphoidal cover.

Definition 1.48. An acyclic graphoidal cover of G is a graphoidal cover ψ of G such that every element of ψ is a path in G. The minimum cardinality of an acyclic graphoidal cover of G is called the acyclic graphoidal covering number of G and is denoted by $\eta_a(G)$ or η_a.
Arumugam and Suresh Suseela have proved the following theorems.

Theorem 1.49 [7]. For any tree T, $\eta_a(T) = n - 1$ where n is the number of pendant vertices in T.

Theorem 1.50 [7]. For any acyclic graphoidal cover ψ of G let t_ψ denote the number of vertices which are not internal to any path in ψ. Let $t = \min t_\psi$ where the minimum is taken over all acyclic graphoidal covers ψ of G. Then $\eta_a = q - p + t$.

Theorem 1.51 [7]. For any graph G with $\delta \geq 3$, $\eta_a = q - p$.

Theorem 1.52. For any graph G, $\eta_a \geq q - p$. Moreover, the following are equivalent.

(i) $\eta_a = q - p$.

(ii) There exists an acyclic graphoidal cover without exterior vertices.

(iii) There exists a set of internally disjoint and edge disjoint paths without exterior vertices. (From such a set of paths required acyclic graphoidal cover can be got by adding the edges which are not covered by paths of this set.)

Theorem 1.53 [7]. Let G be a unicyclic graph with n pendant vertices. Let C be the unique cycle in G. Let m be the number of vertices odd degree greater than 2 on C. Then

$$\eta_a(G) = \begin{cases}
2 & \text{if } m = 0, \\
n + 1 & \text{if } m = 1, \\
n & \text{otherwise.}
\end{cases}$$
Harary [23] introduced the concept of path partition of a graph G.

Definition 1.54. A path partition of a graph G is a collection \mathcal{P} of paths in G such that every edge of G lies in exactly one path in \mathcal{P}.

The minimum cardinality of a path partition of G is called path partition number of G and is denoted by π.

Theorem 1.55 [7]. $\eta_a = \pi$ if and only if $\Delta \leq 3$.

Theorem 1.56 [7]. For any 3-regular graph, $\pi = \frac{p}{2}$.

Theorem 1.57 [7]. Let ψ be any path partition of G. Then

$$|\psi| = \frac{k}{2} + \sum_{v \in V(G)} \left\lceil \frac{\deg v}{2} \right\rceil - \sum_{P \in \psi} i(P)$$

where k is the number of odd vertices of G and for any $P \in \psi$, $i(P)$ is the number of internal vertices of P.

Theorem 1.58 [7]. $\pi(K_{2n}) = n$.

Theorem 1.59 [7]. For any tree T, $\pi = \frac{k}{2}$ where k is the number of odd vertices of T.

Theorem 1.60 [7]. Let G be a unicyclic graph with unique cycle C. Let m denote the number of vertices of degree greater than 2 on C. Let k denote the number of odd vertices of G. Then

$$\pi(G) = \begin{cases} 2 & \text{if } m = 0, \\ \frac{k+2}{2} & \text{if } m = 1, \\ \frac{k}{2} & \text{otherwise.} \end{cases}$$
The concept of path double cover was introduced by Bondy [15].

Definition 1.61. A *path double cover* of a graph G is a collection \mathcal{P} of paths in G such that each edge of G belongs to exactly two paths in \mathcal{P}.

Definition 1.62. A one-to-one mapping f from $V(G)$ into $\{0, 1, 2, \ldots, q\}$ is called a *β-valuation* if the induced function \bar{f} on $E(G)$ given by $\bar{f}(uv) = |f(u) - f(v)|$ is one-to-one.

A β-valuation f is called an *α-valuation* if there exists a non-negative integer λ such that for every $uv \in E(G)$ with $f(u) < f(v)$, $f(u) \leq \lambda < f(v)$.

Definition 1.63 [17]. A decomposition \mathcal{R} of a graph H into subgraphs is said to be *cyclic* if there exists an automorphism f of H which induces a cyclic permutation f_V of the set $V = V(H)$ and satisfies the following implication: If $G \in \mathcal{R}$ then $fG \in \mathcal{R}$. (Here fG is the subgraph of H with vertex set $\{f(u) : u \in V(G)\}$ and edge set $\{f(e) : e \in E(G)\}$.)

Rosa [29] established a close connection between α-labeling and cyclic G-decomposition.

Theorem 1.64 [29]. If a graph G with e edges has an α-valuation then for every positive integer c there exists a cyclic decomposition of the complete graph K_{2ce+1} into subgraphs isomorphic to G.

Definition 1.65. The n-cube Q_n is defined recursively by $Q_1 = K_2$ and $Q_n = K_2 \times Q_{n-1}$. Q_n has 2^n vertices which may be labeled (a_1, a_2, \ldots, a_n).

where each a_i is either 0 or 1. Two vertices of Q_n are adjacent if their binary representation differ at exactly one place.

For any positive integer n, let $Q_n(G) = G \times K_2 \times \cdots \times K_2$ denote the graph of the n-dimensional G-cube. $Q_n(G)$ has $p2^{n-1}$ vertices and $(2q + n - 1)2^{n-1}$ edges.

The existence of an α-valuation of G need not imply the existence of an α-valuation for $Q_n(G)$, $n \geq 2$. For example, the star $K_{1,4m+3}$ admits an α-valuation while $Q_2(K_{1,2m+3})$ admits no α-valuation.

Kotzig [24] has proved that $Q_n(K_2)$ admits an α-valuation.

Theorem 1.66 [24]. For any positive integer n, the n-cube Q_n admits an α-valuation.

Balakrishnan and Sampathkumar [8] have proved the following theorems.

Theorem 1.67 [8]. For any positive integer n, the graph $Q_n(K_{3,3})$ admits an α-valuation.

Theorem 1.68 [8]. For any positive integer n, the graph $Q_n(K_{4,4})$ admits an α-valuation.

Theorem 1.69 [8]. For any positive integer n, the graph $Q_n(P_k)$, $k \geq 2$ admits an α-valuation.