Path Double Covering Number of a Graph

A path double cover of a graph G is a collection \mathcal{P} of paths in G such that every edge of G belongs to exactly two paths in \mathcal{P}. The minimum cardinality of a path double cover is called the path double covering number of G and is denoted by $\eta_{PD}(G)$. In this chapter we determine the exact value of this parameter for several classes of graphs. We also characterize graphs for which $\eta_{PD} = 2\pi$ where π is the path partition number of G.

Bondy [15] introduced the concept of path double cover of a graph. This was further studied by Hao Li [25].

Definition 5.1. A path double cover (PDC) of a graph G is a collection \mathcal{P} of paths in G such that every edge of G belongs to exactly two paths in \mathcal{P}.

The collection \mathcal{P} may not necessarily consist of distinct paths in G and hence it cannot be treated as a set in the standard sense. For any graph $G = (V, E)$ let \mathcal{P} denote the collection of all paths of length 1, each path appearing twice in the collection. Clearly \mathcal{P} is a path double cover of G and hence the set of all path double covers of G is not non-empty.
Definition 5.2. The minimum cardinality of a path double cover of a graph G is called path double covering number of G and is denoted by η_{PD}.

We observe that for any graph G, $\eta_{PD}(G) \leq 2q$ and equality holds if and only if G is isomorphic to qK_2.

Theorem 5.3. Let \mathcal{P} be any path double cover of G. Then $|\mathcal{P}| = 2q - i_\mathcal{P}$ where $i_\mathcal{P} = \sum_{P \in \mathcal{P}} i(P)$ and $i(P)$ is the number of internal vertices of P.

Proof. For any vertex v, let $i(v)$ denote the number of paths in \mathcal{P} having v as an internal vertex. Then v is an end vertex of $2\deg v - 2i(v)$ paths in \mathcal{P}. Hence

$$2|\mathcal{P}| = \sum_{v \in V} [2\deg v - 2i(v)] = 4q - 2i_\mathcal{P}. $$

Thus $|\mathcal{P}| = 2q - i_\mathcal{P}$. \qed

Corollary 5.4. $\eta_{PD} = 2q - i$ where $i = \max i_\mathcal{P}$, the maximum being taken over all path double covers \mathcal{P} of G.

Corollary 5.5. Let G be a graph with $\delta = 1$. If there exists a path double cover \mathcal{P} such that every non-pendant vertex of G is an internal vertex of $d(v)$ paths in \mathcal{P} then \mathcal{P} is a minimum path double cover and $\eta_{PD} = |\mathcal{P}|$.

Theorem 5.6. For any tree T, $\eta_{PD}(T) = n$ where n is the number of pendant vertices of T.
Proof. We first prove by induction on \(n \) that there exists a path double cover \(\mathcal{P} \) such that every non-pendant vertex of \(T \) is an internal vertex of \(d(v) \) paths in \(\mathcal{P} \).

When \(n = 2 \) then \(T \) is a path and the result is trivial. Assume that the result is true for all trees with less than \(n \) pendant vertices.

Let \(T \) be any tree with \(n \) pendant vertices, \(n \geq 3 \). Let \(w \) be a pendant vertex of \(T \). Choose a vertex \(v \) such that \(\deg v \geq 3 \) and \(d(w, v) \) is maximum. Let \(Q \) denote the \((w, v)\)-path. Since \(\deg v \geq 3 \), there exist pendant vertices \(w_1, w_2 \) such that the \((w, w_1)\)-path \(Q_1 \) and the \((w, w_2)\)-path \(Q_2 \) both contain \(Q \). Now let \(P_1 \) and \(P_2 \) denote the \((w, v)\)-section of \(Q_1 \) and \((w_2, v)\)-section of \(Q_2 \) respectively. Since \(v \) is a vertex with \(\deg v \geq 3 \) for which \(d(v, w) \) is maximum, every internal vertex of \(P_1 \) and \(P_2 \) has degree 2. Hence \(v \) is the only vertex of degree greater than 2 on \(P = P_1 \circ P_2^{-1} \). Let \(P = (w_1 = u_0, u_1, u_2, \ldots, u_r (= v), u_k = w_2) \). Let \(T_1 = T - \{u_0, u_1, \ldots, u_{r-1}, u_{r+1}, \ldots, u_k\} \). By induction hypothesis, there exists a path double cover \(\mathcal{P}_1 \) of \(T_1 \) such that every non-pendant vertex of \(T_1 \) is an internal vertex of \(d(v) \) paths in \(\mathcal{P}_1 \).

Case (i) \(\deg_T(v) = 3 \).

Then \(\deg_{T_1}(v) = 1 \). Therefore \(v \) is exterior to two paths, say \(Q_1, Q_2 \) in \(\mathcal{P}_1 \). We may assume that \(v \) is the origin of \(Q_1 \) and \(Q_2 \). Now let \(R_1 = P_1 \circ Q_1 \) and \(R_2 = P_2 \circ Q_2 \). Then \(\mathcal{P} = (\mathcal{P}_1 \cup \{P_1', P_2', P\}) \setminus \{R_1, R_2\} \) is a path double cover of \(T \) such that every non-pendant vertex is an internal vertex of \(d(v) \) paths in \(\mathcal{P} \).
Case (ii) \(\deg_T(v) > 3 \).

Then \(\mathcal{P} = \mathcal{P}_1 \cup \{P, P\} \) is a path double cover of \(T \) such that every non-pendant vertex is an internal vertex of \(d(v) \) paths in \(\mathcal{P} \). Hence it follows that \(\mathcal{P} \) is a minimum path double cover of \(T \) and \(\eta_{PD} = |\mathcal{P}| \). Further \(i_\mathcal{P} = 2q - n \) and it follows from Theorem 5.3 that \(\eta_{PD} = 2q - (2q - n) = n \).

\[\square \]

Theorem 5.7. Let \(G \) be a unicyclic graph with \(n \) pendant vertices. Let \(C = (v_1, v_2, \ldots, v_t, v_1) \) be the unique cycle in \(G \). Let \(m \) be the number of vertices of degree greater than 2 on \(C \). Then

\[
\eta_{PD}(G) = \begin{cases}
3 & \text{if } m = 0 \\
n + 2 & \text{if } m = 1 \\
n + 1 & \text{if } m = 2 \\
n & \text{otherwise.}
\end{cases}
\]

Proof. If \(m = 0 \), then \(G = C \) and \(\eta_{PD} = 3 \). Hence we assume that \(m \geq 1 \).

Case (i) \(m = 1 \).

Let \(v_1 \) be the unique vertex of degree greater than 2 on \(C \). We prove the result by induction on \(n \).

When \(n = 1 \), \(G \) is isomorphic to the graph consisting of the cycle \(C = (v_1, v_2, \ldots, v_t, v_1) \) and a path \(P = (w_1, w_2, \ldots, w_r = v_1) \).

Let \(P_1 = (w_1, w_2, \ldots, w_r = v_1, v_2, \ldots, v_t) \),

\[P_2 = (w_1, w_2, \ldots, w_r = v_1, v_t, v_{t-1}, \ldots, v_2) \]

and \(P_3 = (v_2, w_r = v_1, v_t) \)
Clearly \(\mathcal{P} = \{P_1, P_2, P_3\} \) is a minimum path double cover of \(G \) and hence \(\eta_{PD}(G) = 3 = n + 2 \).

We now assume that the result is true for all unicyclic graphs with \(m = 1 \) and \(n - 1 \) pendant vertices \((n \geq 2) \).

Let \(G \) be any unicyclic graph with \(m = 1 \) and having \(n \) pendant vertices.

Let \(w \) be a pendant vertex of \(G \). Choose a vertex \(v \) such that \(\deg v \geq 3 \) and \(d(w, v) \) is maximum. Let \(Q \) denote the \((w, v)\)-path. Since \(\deg v \geq 3 \), there exist pendant vertices \(w_1, w_2 \) such that the \((w, w_1)\)-path \(Q_1 \) and the \((w, w_2)\)-path \(Q_2 \) both contain \(Q \). Now let \(P_1 \) and \(P_2 \) denote the \((w_1, v)\)-section of \(Q_1 \) and \((w_2, v)\)-section of \(Q_2 \) respectively. Let \(P = P_1 \circ P_2^{-1} \).

Clearly \(v \) is the only vertex of degree greater than 2 on \(P \).

Let \(P = (u_0, u_1, \ldots, u_r, \ldots, u_k) \). Now consider the graph \(G_1 = G - \{w_1 = w_0, u_1, u_2, \ldots, u_{r-1}, u_{r+1}, \ldots, u_k = w_2\} \). Using induction hypothesis, \(\eta_{PD}(G_1) = (n - 1) + 2 = n + 1 \). Let \(\mathcal{P}_1 \) be a minimum path double cover of \(G_1 \).

Subcase (a) \(\deg_G u_r = 3 \).

Then \(\deg_{G_1} u_r = 1 \). Therefore \(u_r \) is exterior to two paths in \(\mathcal{P}_1 \), say for the paths \(R_1 \) and \(R_2 \) in \(\mathcal{P}_1 \). Let \(P'_1 = R_1 \circ P_1 \) and \(P'_2 = R_2 \circ P_2 \). Let \(\mathcal{P} = \mathcal{P}_1 \cup \{P'_1, P'_2, P\} - \{R_1, R_2\} \). Then \(\mathcal{P} \) is a path double cover of \(G \). Thus \(\eta_{PD}(G) \leq n + 2 \). In any path double cover of \(G \) all the \(n \) pendant vertices and at least two vertices in \(C \) are exterior points. Thus \(\eta_{PD}(G) \geq n + 2 \). Hence \(\eta_{PD}(G) = n + 2 \).
Case (ii) \(m = 2 \).

Proof is similar to Case (i).

Case (iii) \(m > 2 \).

As in Case (ii) we can prove that \(\eta_{PD}(G) \leq n \).

Since all the pendant vertices are exterior to all paths in any path double cover of \(G \), \(\eta_{PD}(G) \geq n \).

Hence \(\eta_{PD}(G) = n \). \qed

Theorem 5.8. \(\eta_{PD}(K_n) = n \).

Proof. Since the total number of edges to be covered is \(2 \binom{n}{2} = n(n-1) \) and any path covers at most \(n-1 \) edges it follows that \(\eta_{PD}(K_n) \geq n \).

Now let \(V(K_n) = \{v_0, v_1, v_2, \ldots, v_{n-1}\} \) and for \(0 \leq i \leq n-1 \) let

\[
P_i = \begin{cases} v_i v_{i+1} v_i v_{i+2} v_{i-2} \ldots v_{i+k+1} v_{i+k} & \text{if } n = 2k \\ v_i v_{i+1} v_i v_{i+2} v_{i-2} \ldots v_{i+k} v_{i+k+1} & \text{if } n = 2k + 1 \end{cases}
\]

where the suffixes are integers modulo \(n \). Then \(P = \{P_i \mid 0 \leq i \leq n-1\} \) is a path double cover of \(K_n \). Thus \(\eta_{PD} \leq n \).

Hence \(\eta_{PD}(K_n) = n \). \qed

Theorem 5.9. For any graph \(G \), \(\eta_{PD} \geq \Delta \). Further for any tree \(T \), \(\eta_{PD} = \Delta \) if and only if \(T \) is homeomorphic to a star.

Proof. Let \(v \) be a vertex of degree \(\Delta \) in \(G \). Since we need at least \(\Delta \) paths to cover all the edges incident with \(v \) twice, \(\eta_{PD} \geq \Delta \).
Now suppose T is a tree with $\eta_{PD} = \Delta$. Then it follows from Theorem 5.6 that the number of pendant vertices of T is Δ and hence T is homeomorphic to a star.

The converse is obvious. \qed

Theorem 5.10. For any wheel, $\eta_{PD}(W_n) = \Delta = n$.

Proof. Let $V(W_n) = \{v_0, v_1, v_2, \ldots, v_n\}$ with $\deg v_0 = n$.

Case (i) n is even.

Let $P_1 = (v_n, v_1, v_0, v_{n/2+1}, v_{n/2})$,
$P_2 = (v_{n-1}, v_n, v_0, v_{n/2}, v_{n/2-1})$,
$P_3 = (v_{n-2}, v_{n-1}, v_0, v_{n/2-1}, v_{n/2-2})$,
\vdots
$P_i = (v_{n-(i-1)}, v_{n-(i-2)}, v_0, v_{n/2-(i-2)}, v_{n/2-(i-1)})$,
\vdots
$P_{n/2} = (v_{n/2+1}, v_{n/2+2}, v_0, v_{n/2-(n/2-2)}, v_{n/2-(n/2-1)})$.

Then $P = \{P_1, P_2, P_2, \ldots P_{n/2}, P_{n/2}\}$ is a path double cover of W_n with $|P| = \Delta$.

Case (ii) n is odd.

Let $P_1 = (v_n, v_1, v_0, v_{n+1/2}, v_{n-1/2})$
$P_2 = (v_1, v_2, v_0, v_{(n+1)/2+1}, v_{(n+1)/2})$
$P_3 = (v_2, v_3, v_0, v_{(n+1)/2+2}, v_{(n+1)/2+1})$
\vdots
\vdots
\[P_{(n-1)/2} = (v_{(n-3)/2}, v_{(n-1)/2}, v_0, v_{n-1}, v_{n-2}) \]
\[R = (v_{(n-1)/2}, v_{(n+1)/2}, v_0, v_{n-1}) \]
\[Q_1 = (v_n, v_1, v_0, v_{(n+3)/2}, v_{(n+1)/2}) \]
\[Q_2 = (v_1, v_2, v_0, v_{(n+5)/2}, v_{(n+3)/2}) \]
\[\vdots \quad \vdots \quad \vdots \]
\[Q_{(n-1)/2} = (v_{(n-3)/2}, v_{(n-1)/2}, v_0, v_n, v_{n-1}) \]

Then \(\mathcal{P} = \{ P_1, P_2, \ldots, P_{(n-1)/2}, R, Q_1, Q_2, \ldots, Q_{(n-1)/2} \} \) is a path double cover of \(G \) with \(|P| = \Delta \).

Hence \(\eta_{PD}(W_n) = \Delta = n \).

\[\square \]

Theorem 5.11. For every rectangular grid \(P_m \times P_n \),

\[\eta_{PD}(P_m \times P_n) = \Delta = 4 \forall m, n \geq 3. \]

Proof. Let \(V(G) = \{ v_{ij} \mid 1 \leq i \leq m, 1 \leq j \leq m \} \) where \(P_m = (v_1, v_2, \ldots, v_m) \), \(P_n = (u_1, u_2, \ldots, u_n) \) and \(v_{ij} = (v_i, w_j) \).

Case (i) \(m \) and \(n \) are odd.

Let \(P_1 = (v_{11}, v_{1n}, v_{2n}, \ldots, v_{21}, v_{31}, \ldots, v_{3n}, \ldots, v_{m1}, \ldots, v_{mn}) \)
\[P_2 = (v_{11}, v_{21}, \ldots, v_{m1}, v_{m2}, \ldots, v_{12}, \ldots, v_{1n}, v_{2n}, \ldots, v_{mn}) \]
\[P_3 = (v_{11}, v_{12}, v_{22}, v_{32}, \ldots, v_{m2}, v_{m3}, \ldots, v_{13}, \ldots, v_{1(n-1)}, \ldots, v_{m(n-1)}, v_{mn}) \]
\[P_4 = (v_{11}, v_{21}, v_{22}, \ldots, v_{2n}, v_{3n}, \ldots, v_{41}, \ldots, v_{4n}, \ldots, v_{(m-1)1}, \ldots, v_{(m-1)n}, v_{mn}) \]

Case (ii) \(m \) and \(n \) are even.

Let \(P_1 = (v_{11}, \ldots, v_{1n}, v_{2n}, \ldots, v_{21}, \ldots, v_{mn}, \ldots, v_{mn}) \)
\[P_2 = (v_{11}, v_{21}, \ldots, v_{m1}, v_{m2}, \ldots, v_{12}, \ldots, v_{1n}, v_{(m-1)n}, \ldots, v_{1n}) \]
\[P_3 = (v_{11}, v_{12}, v_{22}, v_{32}, \ldots, v_{m2}, v_{m3}, \ldots, v_{13}, \ldots, v_{1(n-1)}, \ldots, v_{m(n-1)}, v_{1n}) \]
\[P_4 = (v_{11}, v_{21}, v_{22}, \ldots, v_{2n}, v_{3n}, \ldots, v_{31}, \ldots, v_{(m-1)n}, \ldots, v_{(m-1)n}, v_{m1}) \]
Case (iii) \(m \) is odd and \(n \) is even.

Let

\[
P_1 = (v_{11}, \ldots, v_{1n}, v_{21}, \ldots, v_{2n}, \ldots, v_{mn})
\]

\[
P_2 = (v_{11}, v_{21}, \ldots, v_{m1}, v_{m2}, \ldots, v_{12}, \ldots, v_{mn}, v_{m(n-1)}, \ldots, v_{1n})
\]

\[
P_3 = (v_{11}, v_{12}, v_{22}, \ldots, v_{m2}, v_{m3}, \ldots, v_{13}, \ldots, v_{m(n-1)}, \ldots, v_{1(n-1)}, v_{1n})
\]

\[
P_4 = (v_{11}, v_{21}, v_{22}, \ldots, v_{(m-1)1}, v_{(m-1)2}, \ldots, v_{(m-1)n}, v_{mn})
\]

Case (iv) \(m \) is even and \(n \) is odd.

Let

\[
P_1 = (v_{11}, \ldots, v_{1n}, v_{21}, \ldots, v_{2n}, \ldots, v_{mn}, \ldots, v_{m1})
\]

\[
P_2 = (v_{11}, v_{21}, \ldots, v_{m1}, v_{m2}, \ldots, v_{12}, \ldots, v_{2n}, v_{m(n-1)}, \ldots, v_{1n})
\]

\[
P_3 = (v_{11}, v_{12}, v_{22}, \ldots, v_{m2}, v_{m3}, \ldots, v_{13}, \ldots, v_{m(n-1)}, \ldots, v_{1(n-1)}, v_{mn})
\]

\[
P_4 = (v_{11}, v_{21}, v_{22}, \ldots, v_{2n}, v_{3n}, \ldots, v_{31}, \ldots, v_{(m-1)n}, \ldots, v_{(m-1)1}, v_{m1})
\]

In all the cases \(\mathcal{P} = \{P_1, P_2, P_3, P_4\} \) is a path double cover of \(P_m \times P_n \).

Thus \(\eta_{PD}(P_m \times P_n) \leq 4 = \Delta \). By Theorem 5.9, \(\eta_{PD}(P_m \times P_n) \geq \Delta = 4 \).

Hence it follows that \(\eta_{PD}(P_m \times P_n) = \Delta = 4 \).

If \(\psi \) is any path partition of \(G \) then the collection \(\mathcal{P} \) consisting of each path in \(\psi \) twice is a path double cover of \(G \) and hence it follows that \(\eta_{PD} \leq 2\pi \). In the following theorems we characterize all trees and unicyclic graphs for which \(\eta_{PD} = 2\pi \).

Theorem 5.12. Let \(T \) be any tree. Then \(\eta_{PD}(T) = 2\pi \) if and only if pendant vertices of \(T \) are the only vertices of odd degree.

Proof. Let \(T \) be any tree with \(n \) pendant vertices, which are the only vertices of odd degree. Then it follows from Theorem 1.59 that \(\pi(T) = \frac{n}{2} \).

Further by Theorem 5.6, \(\eta_{PD}(T) = n \) and hence \(\eta_{PD} = 2\pi \).
Conversely if $\eta_{PD} = 2\pi$ then it follows from Theorem 1.59 and Theorem 5.6 that the number of vertices of odd degree is equal to the number of pendant vertices of T.

Theorem 5.13. Let G be a unicyclic graph with unique cycle C and $G \neq C$. Let m be the number of vertices of degree greater than 2 on C. Then $\eta_{PD} = 2\pi$ if and only if $m \neq 2$ and pendant vertices of G are the only vertices of odd degree or $m = 2$ and there is exactly one non-pendant vertex of odd degree.

Proof. Follows from Theorem 5.7 and Theorem 1.60.