Chapter 7

Near Equitable Domination in
Graphs

Reference [38, 39, 41, 42] are based on this chapter.
7.1 Introduction

In this chapter, we define and study a new domination parameter called near equitable domination number of graphs.

Definition 7.1.1. Let D be a dominating set of a graph G. Then D is called a near equitable dominating set of G if for every vertex $v \in V - D$, there exists a vertex $u \in D$ such that u is adjacent to v and $|od_D(u) - od_{V-D}(v)| \leq 1$. The minimum cardinality of such a near equitable dominating set is called the near equitable domination number of G and is denoted by $\gamma_{ne}(G)$.

In section 7.2, we introduce some interesting results of a near equitable domination in graphs. Some bounds for a near equitable domination number are found. Near equitable domatic number of a graph G is also studied. In section 7.3, results involving connected near equitable dominating set are found, some bounds for a connected near equitable domination number are obtained. In section 7.4, we initiate the study of a total near equitable domination parameter. In section 7.5, we introduce the concept of strong total near equitable domination in graphs.
7.2 On near equitable domination in graphs

7.2.1 Main Results

Definition 7.2.1. Let D be a near equitable dominating set of a graph G. The near equitable neighborhood of $u \in D$, denoted by $N_{ne}^D(u)$ is defined as

$$N_{ne}^D(u) = \{v \in V - D : v \in N(u), |od_D(u) - od_{V - D}(v)| \leq 1\}.$$

Definition 7.2.2. Let D be a near equitable dominating set of a graph G. The maximum and minimum near equitable degree of D are denoted by Δ_{ne}^D and δ_{ne}^D, respectively. That is $\Delta_{ne}^D = \max_{u \in D}|N_{ne}^D(u)|$ and $\delta_{ne}^D = \min_{u \in D}|N_{ne}^D(u)|$.

For example, let $G \cong nK_2$, $n \geq 1$, if D is a near equitable dominating set of G, then $\Delta(G) = \Delta_{ne}^D = \delta(G) = \delta_{ne}^D = 1$.

From the definition 7.2.2, we have the following propositions.

Proposition 7.2.3. If D is a near equitable dominating set of a graph G, then $\Delta_{ne}^D \leq \Delta(G)$.

Proposition 7.2.4. Let G be a graph containing isolated vertices. If D is a near equitable dominating set of G, then $\delta(G) = \delta_{ne}^D$.

Proposition 7.2.5. If D is a near equitable dominating set of a tree T, then $\delta(T) \leq \delta_{ne}^D$.
It is obvious that any near equitable dominating set of a graph G is also a dominating set, and thus we obtain the obvious bound $\gamma(G) \leq \gamma_{ne}(G)$. Furthermore, the difference $\gamma_{ne}(G) - \gamma(G)$ can be arbitrarily large in a graph G. It can be easily checked that $\gamma(K_{1,n}) = 1$, while $\gamma_{ne}(K_{1,n}) = n - 1$.

Observation 7.2.6. There exist graphs for which the three parameters $\gamma(G)$, $\gamma_e(G)$ and $\gamma_{ne}(G)$ are distinct. For graph G given in Figure 7.2.1, we have $\gamma(G) = 5$, $\gamma_e(G) = 9$ and $\gamma_{ne}(G) = 6$.

![Figure 7.2.1](image)

Proposition 7.2.7. For any connected graph G of order p, $p \leq 3$,

$$\gamma_{ne}(G) = \gamma_e(G) = \gamma(G) = 1.$$
Proof. Clearly, $\gamma_{ne}(G) = 1$ only for $G \cong K_{1,n}$, $n \leq 2$. Since for $p \leq 3$, we have $\gamma_e(G) = \gamma(G) = 1$, the proof follows.

We now proceed to compute $\gamma_{ne}(G)$ for some standard graphs.

Observation 7.2.8. For a path P_p, $\gamma_{ne}(P_p) = \gamma_e(P_p) = \gamma(P_p) = \lceil \frac{p}{3} \rceil$.

Observation 7.2.9. For a cycle C_p, $\gamma_{ne}(C_p) = \gamma_e(C_p) = \gamma(C_p) = \lceil \frac{p}{3} \rceil$.

Theorem 7.2.10. For a complete graph K_p, $\gamma_{ne}(K_p) = \lfloor \frac{p}{2} \rfloor$.

Proof. Let $V(K_p) = \{v_1, v_2, \ldots, v_p\}$ and $D \subset V(K_p)$ be a near equitable dominating set. By the definition of near equitable dominating set, for any $v_i \in V - D$, there exists $v_j \in D$ such that $|od_D(v_j) - od_{V-D}(v_i)| \leq 1$. Therefore, $|D| = \lfloor \frac{p}{2} \rfloor$ or $\lceil \frac{p}{2} \rceil$. Thus, $\gamma_{ne}(K_p) = \lfloor \frac{p}{2} \rfloor$.

Theorem 7.2.11. For the double star $S_{n,m}$,

$$\gamma_{ne}(S_{n,m}) = \begin{cases}
2, & \text{if } n, m \leq 2; \\
n + m - 2, & \text{if } n, m \geq 2 \text{ and } n \text{ or } m \geq 3.
\end{cases}$$

Proof. Let $V(S_{n,m}) = \{u, v, u_1, u_2, \ldots, u_n, v_1, v_2, \ldots, v_m\}$. We consider the following cases.

Case 1: $n, m \leq 2$. Let $D = \{u, v\}$ be a minimum dominating set of $S_{n,m}$. Then $|od_D(u) - od_{V-D}(u_i)| \leq 1$, $1 \leq i \leq n$ and $|od_D(v) - od_{V-D}(v_i)| \leq 1$, $1 \leq i \leq m$. Hence, D is a near equitable dominating set of $S_{n,m}$. Thus, $\gamma_{ne}(S_{n,m}) \leq \gamma(S_{n,m})$. But we
have, $\gamma(S_{n,m}) \leq \gamma_{ne}(S_{n,m})$. Therefore, $\gamma(S_{n,m}) = \gamma_{ne}(S_{n,m})$. Thus, D is a minimum near equitable dominating set, and $\gamma_{ne}(S_{n,m}) = 2$.

Case 2: $n, m \geq 2$ and n or $m \geq 3$. Without loss of generality, let $m \geq 3$. Consider a dominating set $D = \{u, v, u_1, u_2, \ldots, u_{n-2}, v_1, v_2, \ldots, v_{m-2}\}$. Then, $od_D(u) = 2$, $od_{V-D}(u_i) = 1, i = n-1, n$, $od_D(v) = 2$ and $od_{V-D}(v_i) = 1, i = n-1, n$, it follows that, $|od_D(u) - od_{V-D}(u_i)| \leq 1$ and $|od_D(v) - od_{V-D}(v_i)| \leq 1$. Therefore, by the definition, D is a near equitable dominating set. Now, if $D_1 = \{u, v, u_1, u_2, \ldots, u_{n-3}, v_1, v_2, \ldots, v_{m-2}\}$ is a near equitable dominating set of $S_{n,m}$, then $|od_{D_1}(u) - od_{V-D_1}(u_i)| = 3$, for every i, $i = n-2, n-1, n$, a contradiction. Thus, D is a minimum near equitable dominating set, and $\gamma_{ne}(S_{n,m}) = n + m - 2$.

Theorem 7.2.12. For the complete bipartite graph $G \cong K_{n,m}$ with $1 < m \leq n$,

$$
\gamma_{ne}(K_{n,m}) = \begin{cases}
 m - 1, & \text{if } n = m \text{ and } m \geq 3; \\
 m, & \text{if } n - m = 1 \text{ or } n, m \leq 2; \\
 n - 1, & \text{if } n - m \geq 2.
\end{cases}
$$

Proof. Let $V_1 = \{u_1, u_2, \ldots, u_n\}$ and $V_2 = \{v_1, v_2, \ldots, v_m\}$ be the bipartition of $K_{n,m}$. We consider the following cases.

Case 1: $n = m \geq 3$. We consider the following subcases.

Subcase 1.1: $n = m = 3$. Let $D = \{u_1, v_1\}$ be a minimum dominating set of $K_{n,m}$. Then, $|od_D(u_1) - od_{V-D}(v_1)| = 1$, for all $v_i \in V_2 - D$ and $|od_D(v_1) - od_{V-D}(u_i)| = 1$, for all $u_i \in V_1 - D$. Hence, D is a near equitable dominating set of $K_{n,m}$. Therefore,
\(\gamma_{ne}(K_{n,m}) \leq \gamma(K_{n,m}) \). But \(\gamma(K_{n,m}) \leq \gamma_{ne}(K_{n,m}) \). Hence, \(\gamma(K_{n,m}) = \gamma_{ne}(K_{n,m}) \).

Thus, \(D \) is a minimum near equitable dominating set.

Subcase 1.2 : \(n = m \geq 4 \). We have the following subsubcases.

Subsubcase 1.2.1 : \(n \) and \(m \) are odd.

Consider a dominating set \(D = \{u_1, u_2, ..., u_{\lfloor \frac{n}{2} \rfloor}, v_1, v_2, ..., v_{\lfloor \frac{m}{2} \rfloor} \} \) such that \(|D| = m - 1 \).

Then \(od_D(u_i) = \lceil \frac{m}{2} \rceil \), \(od_D(v_i) = \lceil \frac{n}{2} \rceil \), \(od_{v_{1-D}}(u_j) = \lfloor \frac{m}{2} \rfloor \) and \(od_{v_{2-D}}(v_j) = \lfloor \frac{n}{2} \rfloor \). Since \(n = m \), \(|od_D(u_i) - od_{v_{2-D}}(v_j)| \leq 1 \), for all \(v_j \in V_2 - D \) and \(|od_D(v_i) - od_{v_{1-D}}(u_j)| \leq 1 \), for all \(u_j \in V_1 - D \). Therefore, \(D \) is a near equitable dominating set. Now, if \(D_1 = \{u_1, u_2, ..., u_s, v_1, v_2, ..., v_{n-s-2} \} \), \(s < \lfloor \frac{n}{2} \rfloor \) is a near equitable dominating set of \(K_{n,m} \), then \(|od_{D_1}(u_i) - od_{v_{2-D_1}}(v_j)| = 2 \) and \(|od_{D_1}(v_i) - od_{v_{1-D_1}}(u_j)| = 2 \), a contradiction. Therefore, \(D \) is a minimum near equitable dominating set.

Subsubcase 1.2.2 : \(n \) and \(m \) are even.

Consider a dominating set \(D = \{u_1, u_2, ..., u_{\frac{n}{2}}, v_1, v_2, ..., v_{\frac{m}{2}-1} \} \) such that \(|D| = m - 1 \).

Then \(od_D(u_i) = \frac{n}{2} + 1 \), \(od_D(v_i) = \frac{n}{2} \), \(od_{v_{1-D}}(u_j) = \frac{m}{2} - 1 \) and \(od_{v_{2-D}}(v_j) = \frac{n}{2} \). Since \(n = m \), \(|od_D(u_i) - od_{v_{2-D}}(v_j)| \leq 1 \), for all \(v_j \in V_2 - D \) and \(|od_D(v_i) - od_{v_{1-D}}(u_j)| \leq 1 \), for all \(u_j \in V_1 - D \). Therefore, \(D \) is a near equitable dominating set. Now, if \(D_1 = \{u_1, u_2, ..., u_s, v_1, v_2, ..., v_{n-s-2} \} \), \(s < \lfloor \frac{n}{2} \rfloor \) is a near equitable dominating set of \(K_{n,m} \), then \(|od_{D_1}(u_i) - od_{v_{2-D_1}}(v_j)| = 2 \), and \(|od_{D_1}(v_i) - od_{v_{1-D_1}}(u_j)| = 2 \), a contradiction. Therefore, \(D \) is a minimum near equitable dominating set.
Case 2: $n \neq m$. We consider the following subcases.

Subcase 2.1: $n - m = 1$. Consider $D = \{u_1, u_2, \ldots, u_{\lfloor \frac{n}{2} \rfloor}, v_1, v_2, \ldots, v_{\lfloor \frac{m}{2} \rfloor}\}$, a dominating set such that $|D| = m$. Since $n = m + 1$, $|od_D(u_i) - od_{v_2-D}(v_j)| \leq 1$, for all $v_j \in V_2 - D$ and $|od_D(v_i) - od_{v_1-D}(u_j)| \leq 1$, for all $u_j \in V_1 - D$. Therefore, D is a near equitable dominating set. Now, if $D_1 = \{u_1, u_2, \ldots, u_s, v_1, v_2, \ldots, v_{n-s-2}\}$, $s < \lfloor \frac{n}{2} \rfloor$ is a near equitable dominating set and if n is odd, then $|od_{D_1}(v_i) - od_{v_1-D_1}(u_j)| = 2$. Similarly, if n is even, then $|od_{D_1}(v_i) - od_{v_1-D_1}(u_j)| = 2$, a contradiction. Thus, D is a minimum near equitable dominating set.

Subcase 2.2: $n - m \geq 2$.

Consider a dominating set $D = \{u_1, u_2, \ldots, u_{n-m-1}, v_1, v_2, \ldots, v_m\}$, $|D| = n - 1$. Then, $|od_D(u_i) - od_{v_2-D}(v_j)| = 0$, for all $v_j \in V_2 - D$ and $|od_D(v_i) - od_{v_1-D}(u_j)| = 1$, for all $u_j \in V_1 - D$. Therefore, D is a near equitable dominating set. Now, if $D_1 = D - \{u_{n-m-1}\}$ or $D - \{v_m\}$ is a near equitable dominating set, then we have $D_1 = \{u_1, u_2, \ldots, u_{n-m-2}, v_1, v_2, \ldots, v_m\}$ or $D_1 = \{u_1, u_2, \ldots, u_{n-m-1}, v_1, v_2, \ldots, v_{m-1}\}$. But then, $|od_{D_1}(v_i) - od_{v_1-D_1}(u_j)| = 2$, a contradiction. Thus, D is a minimum near equitable dominating set.

Theorem 7.2.13. For the wheel $W_{1,n}$, $n \geq 5$,

$$\gamma_{ne}(W_{1,n}) = \left\lceil \frac{n}{3} \right\rceil + 1$$

Proof. Let $V(W_{1,n}) = \{u, v_1, v_2, \ldots, v_n\}$, where u is the central vertex of $W_{1,n}$ and
$v_i, 1 \leq i \leq n$ is on the cycle. By Theorem 7.2.9, $\gamma_{ne}(C_n) = \lceil \frac{n}{3} \rceil$. Let D be a minimum near equitable dominating set of C_n and $D_1 = D \cup \{u\}$. Then we have $od_{D_1}(v_i) = 2$, $od_{D_1}(u) = n - \lceil \frac{n}{3} \rceil$ and $od_{V-D_1}(v_j) \leq 3$. Therefore, for any $v_j \in V - D_1$, there exists $v_i \in D_1$ such that v_j adjacent to v_i and $|od_{D_1}(v_i) - od_{V-D_1}(v_j)| \leq 1$. Now, if $D_1 = (D - \{v_k\}) \cup \{u\}$ is a near equitable dominating set of $W_{1,n}$, then there exists $v_{k+1} \in V - D_1$ not dominated by any vertex of D, but dominated by u. But we have $\vert od_{D_1}(u) - od_{V-D_1}(v_{k+1}) \rvert \geq 2$, a contradiction. Also, if $D_1 = D$ is a near equitable dominating set, then for any $v_i \in D_1$, $|od_{D_1}(v_i) - od_{V-D_1}(u)| \geq 2$, a contradiction. So, $u \in D_1$. Thus, $\gamma_{ne}(W_{1,n}) = \lceil \frac{n}{3} \rceil + 1$. \hfill \qed

Theorem 7.2.14. Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be graphs such that $|V_1| = n$ and $|V_2| = m$, $n \leq m$, $m - n \leq 1$. Then $\gamma_{ne}(G_1 + G_2) = n$.

Proof. Let $G = G_1 + G_2$. For any $u \in V_1$ and $v \in V_2$, u and v are adjacent. Since $m - n \leq 1$, it follows that $|od_{V_1}(u) - od_{V_2}(v)| \leq 1$ in G. Since $n \leq m$, V_1 is a minimum near equitable dominating set of G. Thus, $\gamma_{ne}(G) = n$. \hfill \qed

Theorem 7.2.15. Let G be a graph with any minimum perfect dominating set D having the following property: for every $u \in D$, $od_D(u) \leq 2$. Then $\gamma_{ne}(G) \leq \gamma_p(G)$.

Proof. Let D be a minimum perfect dominating set of a graph G. Then every $v \in V - D$ is dominated by exactly one vertex of D. Since for every $u \in D$, $od_D(u) \leq 2$, it follows that $|od_D(u) - od_{V-D}(v)| \leq 1$. Hence, D is a near equitable dominating set. Thus, $\gamma_{ne}(G) \leq \gamma_p(G)$. \hfill \qed
We define a near equitable pendant vertex of a graph as follows.

Definition 7.2.16. Let D be a near equitable dominating set of a graph G. Then $u \in D$ is a near equitable pendant vertex if $od_D(u) = 1$. A set D is called a near equitable pendant dominating set if every vertex of D is a near equitable pendant vertex.

Theorem 7.2.17. Let D be a near equitable pendant dominating set of a graph G. Then $V - D$ is a minimum near equitable dominating set of G.

Proof. Suppose that D is a near equitable pendant dominating set. Then for every $u \in D$, $od_D(u) = 1$ and $od_{V-D}(v) \leq 2$ for every $v \in V - D$. Therefore, for any $u \in D$, there exists $v \in V - D$ such that v is adjacent to u and $|od_D(u) - od_{V-D}(v)| \leq 1$, so that $V - D$ is a near equitable dominating set. Since for every $u \in D$, $od_D(u) = 1$ and $od_{V-D}(v) \leq 2$, for every $v \in V - D$, it follows that $|V - D| \leq |D|$. So, $V - D$ is a minimum near equitable dominating set of G.

Theorem 7.2.18. Let T be a wounded spider obtained from the star $K_{1,p-1}$, $p \geq 5$ by subdividing m edges exactly once. Then

$$\gamma_{ne}(T) = \begin{cases} p, & \text{if } m = p - 1; \\ p - 1, & \text{if } m = p - 2; \\ p - 2, & \text{if } m \leq p - 3. \end{cases}$$

Proof. Let $K_{1,p-1}$ be a star with central vertex u. Then $V(K_{1,p-1}) = \{u, u_1, u_2, ..., u_{p-1}\}$ with $deg(u) = p - 1$. Let v_i be the vertex subdividing the edge uu_i. Then we consider
the following cases.

Case 1: \(m = p - 1 \). \(D = \{u, v_1, v_2, ..., v_{m-1}, v_{p-1}\} \) is a near equitable dominating set and hence \(\gamma_{ne}(T) \leq |D| = p \). But \(\gamma(T) = p - 1 \) and \(\gamma(G) \leq \gamma_{ne}(G) \), it follows that \(p - 1 \leq \gamma_{ne}(T) \leq p \). Now, if \(\gamma_{ne}(T) = p - 1 \), then consider a near equitable dominating set, \(D = \{u, v_1, v_2, ..., v_r, u_1, u_2, ..., u_s\} \) such that \(r + s + 1 = p - 1 \). We consider the following subcases.

Subcase 1.1: \(r = 0 \) (or \(s = 0 \)). Then \(s = p - 2 \) (or \(r = p - 2 \)), so that there exists a vertex \(u_i \) which is not dominated by any vertex of \(D \), a contradiction.

Subcase 1.2: \(u \notin D \). Then \(D = \{v_1, v_2, ..., v_r, u_1, u_2, ..., u_s\} \) and \(r + s = p - 1 \). Since \(p \geq 5 \), \(od_{\nu-D}(u) \geq 4 \) and for any \(v \in D \), \(od_D(v) \leq 2 \), so that \(|od_D(v) - od_{\nu-D}(u)| \geq 2 \), a contradiction.

So, \(|D| = p \). Hence, \(\gamma_{ne}(T) = p \).

Case 2: \(m = p - 2 \). Since \(p \geq 5 \), it follows that \(D = \{u, v_1, v_2, ..., v_{m-1}, v_{p-2}\} \) is a near equitable dominating set and hence \(\gamma_{ne}(T) \leq |D| = p - 1 \). Since \(\gamma(T) = p - 1 \), we have \(\gamma_{ne}(T) \geq p - 1 \) and hence \(\gamma_{ne}(T) = p - 1 \).

Case 3: \(m \leq p - 3 \). Since \(p \geq 5 \), it follows that \(D = \{u, v_1, v_2, ..., v_{m-1}, v_{p-3}\} \) is a near equitable dominating set and hence \(\gamma_{ne}(T) \leq |D| = p - 2 \). Since \(\gamma(T) = p - 2 \), we have \(\gamma_{ne}(T) \geq p - 2 \) and hence \(\gamma_{ne}(T) = p - 2 \).

From Theorem 7.2.18, we have the following Corollary.

Corollary 7.2.19. Let \(T \) be a wounded spider obtained from the star \(K_{1,p-1} \), \(p \geq 5 \) by
subdividing m edges exactly once. Then $\gamma_{ne}(T) = \gamma_e(T) = p$ if and only if $m = p - 1$.

Theorem 7.2.20. Let G be a connected claw free graph and D be a minimum dominating set of G. If $od_D(u) \leq 2$, for any $u \in D$, then $\gamma_{ne}(G) = \gamma(G)$.

Proof. Let D be a maximal independent set of minimum cardinality. It follows from Theorem 1.5.6 that $\gamma(G) = |D|$. Now, since $od_D(u) \leq 2$, for any $u \in D$ and G is claw free, it follows that every vertex $u \in D$ has at most two neighbors in $V - D$ and every vertex $v \in V - D$ has either one or two neighbors in D. Therefore, for every $v \in V - D$, $|od_D(u) - od_{V - D}(v)| \leq 1$. Hence, D is a near equitable dominating set of G. Since $\gamma_{ne}(G) \leq |D| = \gamma(G)$ and $\gamma(G) \leq \gamma_{ne}(G)$, it follows that $\gamma_{ne}(G) = \gamma(G)$. \qed

Remark 7.2.21. Let $G \cong mK_2$, $m \geq 1$. Then $\gamma_{ne}(G) = \gamma_e(G) = \gamma(G) = m$.

Theorem 7.2.22. Let D be a minimum dominating set of a graph G. If D is a perfect dominating set such that for any $u \in D$, $od_D(u) \leq 2$, then $\gamma_{ne}(G) = \gamma(G)$.

Proof. Suppose D is a perfect dominating set a graph G. Then every vertex of $V - D$ has one neighbor in D. Since for any $u \in D$, $od_D(u) \leq 2$, it follows that for every $v \in V - D$, $|od_D(u) - od_{V - D}(v)| \leq 1$. Hence, D is a near equitable dominating set of G. Since $\gamma_{ne}(G) \leq |D| = \gamma(G)$ and $\gamma(G) \leq \gamma_{ne}(G)$, it follows that $\gamma_{ne}(G) = \gamma(G)$. \qed

Theorem 7.2.23. Let T be a tree in which every non-pendant vertex is either a support or adjacent to a support and every non-pendant vertex which is non support
is adjacent to at most three supports and every support is adjacent to at most one non-support and one pendant vertex. Then $\gamma_{ne}(T) = \gamma(T)$.

Proof. Let D denote the set of all supports of T. Clearly, D is a minimum dominating set. Since by hypothesis, the out degree of any support vertex is at most two and the out degree of any non-support vertex is at least one and at most three, it follows that D is a minimum near equitable dominating set. So $\gamma_{ne}(G) \leq \gamma(G)$. But, $\gamma(G) \leq \gamma_{ne}(G)$. Thus, $\gamma_{ne}(T) = \gamma(T)$. \hfill \qed

Definition 7.2.24. A near equitable dominating set D of a graph G is said to be a minimal near equitable dominating set if no proper subset of D is near equitable dominating set.

Theorem 7.2.25. Let D be a near equitable dominating set of a graph G. Then for any $v \in D$, D is minimal near equitable dominating set of G if and only if one of the following holds.

(i) D is a minimal dominating set.

(ii) There exists $y \in V - D$ such that for each $x \in N(y)$ in D, $od_{V-D}(y) \leq od_D(x)$ and for any $z \neq x \in N(y)$ in D, $od_D(x) < od_D(z)$, the set U_v is nonempty, where

$$U_v = \{ x \in N(y) : od_D(x) - od_{V-D}(y) = 0 \text{ and } v \in N(x) \cap N(y) \text{ or }$$

$$od_D(x) - od_{V-D}(y) = 1 \text{ and } v \in N(x) \text{ or } v \in N(y) \}.$$
Proof. Suppose that D is a minimal near equitable dominating set of G. Then for any $v \in D$, $D - \{v\}$ is not a near equitable dominating set. Since D is a near equitable dominating set, D is a dominating set. If D is a minimal dominating set, then we are done. If not, then for any $v \in D$, let $U_v = \{x \in N(y) : od_D(x) - od_{V-D}(y) = 0 \text{ and } v \in N(x) \cap N(y) \text{ or } od_D(x) - od_{V-D}(y) = 1 \text{ and } v \in N(x) \text{ or } v \in N(y)\}$. Since D is a minimal near equitable dominating set, it follows that there exists $y \in V - (D - \{v\})$ such that for any $x \in D - \{v\}$, $|od_{D-\{v\}}(x) - od_{V-(D-\{v\})}(y)| > 1$. If v is not adjacent to both x and y, then $|od_{D-\{v\}}(x) - od_{V-(D-\{v\})}(y)| = |od_D(x) - od_{V-D}(y)| \leq 1$, a contradiction. If v is adjacent to x, then using triangle inequality, we obtain,

$$1 < |od_{D-\{v\}}(x) - od_{V-(D-\{v\})}(y)| = |od_D(x) + 1 - od_{V-D}(y)| \leq |od_D(x) - od_{V-D}(y)| + 1.$$

Therefore, $|od_D(x) - od_{V-D}(y)| > 0$. Since $|od_D(x) - od_{V-D}(y)| \leq 1$ it follows that $|od_D(x) - od_{V-D}(y)| = 1$. If $od_{V-D}(y) > od_D(x)$, then $|od_{D-\{v\}}(x) - od_{V-(D-\{v\})}(y)| \leq 1$, a contradiction. Therefore, $od_{V-D}(y) \leq od_D(x)$ and for any $z \neq x \in N(y)$ in D, $od_D(x) < od_D(z)$. Hence, $od_D(x) - od_{V-D}(y) = 1$. Similarly, if v is adjacent to y, we have $od_D(x) - od_{V-D}(y) = 1$. Now, if v is adjacent to both x and y, then using triangle inequality, we obtain,

$$1 < |od_{D-\{v\}}(x) - od_{V-(D-\{v\})}(y)| = |od_D(x) + 1 - od_{V-D}(y) - 1| \leq |od_D(x) - od_{V-D}(y)| + 2.$$
But, $| \text{od}_D(x) - \text{od}_{V-D}(y) | \leq 1$. Hence, we have $| \text{od}_D(x) - \text{od}_{V-D}(y) | = 0$ or 1. Since $\text{od}_{V-D}(y) \leq \text{od}_D(x)$, it follows that, $\text{od}_D(x) - \text{od}_{V-D}(y) = 0$ or 1. Thus, U_v is nonempty.

Conversely, let D be a near equitable dominating set and suppose that D is a minimal dominating set. Suppose to the contrary, D is not a minimal near equitable dominating set. Then there exists $v \in D$ such that $D - \{v\}$ is a near equitable dominating set. So, D is not minimal dominating set, a contradiction. Next, suppose that D is a near equitable dominating set and (ii) holds. Then for every $v \in D$, U_v is not empty. So, for every $v \in D$, there exist two adjacent vertices $x \in D$ and $y \in V - D$ such that $\text{od}_D(x) - \text{od}_{(V-D)}(y) = 0$ and $v \in N(x) \cap N(y)$ or $\text{od}_D(x) - \text{od}_{(V-D)}(y) = 1$ and $v \in N(x)$ or $v \in N(y)$. Suppose to the contrary, D is not a minimal near equitable dominating set. Then there exists $v \in D$ such that $D - \{v\}$ is a near equitable dominating set. So,

$$| \text{od}_{D-(v)}(x) - \text{od}_{V-(D-(v))}(y) | \leq 1$$

If v is adjacent to x, then using triangle inequality, we obtain

$$1 \geq | \text{od}_{D-(v)}(x) - \text{od}_{V-(D-(v))}(y) | = | \text{od}_D(x) + 1 - \text{od}_{V-D}(y) |$$

$$\leq | \text{od}_D(x) - \text{od}_{V-D}(y) | + 1 = 2$$

Similarly, if v is adjacent to y, then using triangle inequality, we obtain

$$1 \geq | \text{od}_{D-(v)}(x) - \text{od}_{V-(D-(v))}(y) | = | \text{od}_D(x) - \text{od}_{V-D}(y) - 1 |$$

$$\leq | \text{od}_D(x) - \text{od}_{V-D}(y) | + 1 = 2$$
Now, if v is adjacent to both x and y, then using triangle inequality, we obtain
\[
1 \geq |\text{od}_{D - \{v\}}(x) - \text{od}_{V - (D - \{v\})}(y)| = |\text{od}_D(x) + 1 - \text{od}_{V - D}(y) - 1|
\leq |\text{od}_D(x) - \text{od}_{V - D}(y)| + 2 = 3.
\]
Therefore, if $|\text{od}_{D - \{v\}}(x) - \text{od}_{V - (D - \{v\})}(y)| = 2$ or 3, then we have a contradiction to the fact that $D - \{v\}$ is a near equitable dominating set. If $|\text{od}_{D - \{v\}}(x) - \text{od}_{V - (D - \{v\})}(y)| = 1$, then $|\text{od}_{D - \{v\}}(x) - \text{od}_{V - (D - \{v\})}(y)| = |\text{od}_D(x) - \text{od}_{V - D}(y)|$, and v is not adjacent to x or y, a contradiction.

\[\square\]

7.2.2 Bounds

In this subsection, we present bounds for $\gamma_{ne}(G)$.

Theorem 7.2.26. Let G be a connected graph of order p, $p \geq 3$. Then $\gamma_{ne}(G) \leq p - 2$.

Proof. It is enough to show that for any minimum near equitable dominating set D of G, $|V - D| \geq 2$. Since G is a connected graph, it follows that $\delta(G) \geq 1$. Suppose that $v \in V - D$ and is adjacent to $u \in D$. Since $\text{od}_{V - D}(v) \geq 1$, it follows that $\text{od}_D(u) \geq 2$.

The bound is sharp for $K_{1,n}$, $n \geq 2$.

Theorem 7.2.27. Let G be a graph of order p and D be a dominating set of G. If $V - D$ is near equitable pendant dominating set, then $\gamma_{ne}(G) \leq \frac{p}{2}$.
Proof. Let D be a dominating set of a graph G. Suppose that $V - D$ is a near equitable pendant dominating set. Then by Theorem 7.2.17, D is a minimum near equitable dominating set. Therefore,

$$\gamma_{ne}(G) \leq |V - D|$$
$$= p - |D|$$
$$= p - \gamma_{ne}(G)$$
$$= \frac{p}{2}$$

\[\square\]

Proposition 7.2.28. If T is a nontrivial tree with r support vertices such that for any support vertex u, $\text{deg}(u) \leq 2$, then $\gamma_{ne}(T) \leq p - r$.

Proof. Let D be the set of all support vertices. Then $|D| = r$. Since every vertex of D has at most two neighbors in $V - D$, one of them being a pendant vertex, it follows that $V - D$ is near equitable dominating set of T. Hence,

$$\gamma_{ne}(T) \leq |V - D| = p - |D| = p - r.$$

\[\square\]
7.2.3 Near equitable domatic number of graphs.

In this subsection, we present few basic results on the near equitable domatic number of a graph.

Definition 7.2.29. A near equitable domatic partition of G is a partition $\{V_1, V_2, \ldots, V_k\}$ of $V(G)$ in which each V_i, $1 \leq i \leq k$ is a near equitable dominating set of G. The maximum order of a near equitable domatic partition of G is called the near equitable domatic number of G and is denoted by $d_{ne}(G)$.

We now proceed to compute $d_{ne}(G)$ for some standard graphs.

Observation 7.2.30. For any complete graph K_p, $p \geq 4$, $d_{ne}(K_p) = 2$.

Observation 7.2.31. For any cycle C_p, $p \geq 4$, $d_{ne}(C_p) = 2$.

Observation 7.2.32. For any path P_p, $d_{ne}(P_p) = 2$.

Observation 7.2.33. For any star $K_{1,n}$, $n \geq 3$, $d_{ne}(K_{1,n}) = 1$.

Proposition 7.2.34. For any wheel $W_{1,n}$, $n \geq 5$, $d_{ne}(W_{1,n}) = 1$

From Theorem 7.2.12, we have the following Proposition.

Proposition 7.2.35. For the complete bipartite graph $G \cong K_{n,m}$ with $m \leq n$,

$$d_{ne}(K_{n,m}) = \begin{cases} 2, & \text{if } n - m \leq 2; \\ 1, & \text{if } n - m \geq 3, n, m \geq 2. \end{cases}$$
It is obvious that any partition of V into near equitable dominating sets is also a partition of V into dominating set, and thus we obtain the obvious bound $d_{ne}(G) \leq d(G)$.

Furthermore, the difference $d(G) - d_{ne}(G)$ can be arbitrarily large in a graph G. For example, for the complete graph K_p, $p \geq 4$, it can be easily checked that $d_{ne}(K_p) = 2$, while $d(K_p) = p$.

Theorem 7.2.36. For any graph G, $d_{ne}(G) \leq \delta(G) + 1$.

Proof. Let D be any near equitable dominating set. Then for any $v \in V(G)$, $D \cap N[v] \neq \emptyset$. Let $v \in V(G)$ such that $\text{deg}(v) = \delta(G)$ and $N[v] = \{v, u_1, u_2, ..., u_\delta\}$.

If $d_{ne}(G) > \delta(G) + 1$, then there exist at least $(\delta(G) + 2)$ sets in the near equitable domatic partition of G, each containing at least one element of $N[v]$. So we have $\text{deg}(v) \geq \delta(G) + 1$, a contradiction. Hence, $d_{ne}(G) \leq \delta(G) + 1$. \hfill \Box

Theorem 7.2.37. For any graph G of order p, $d_{ne}(G) \leq \frac{p}{\gamma_{ne}(G)}$.

Proof. Suppose that $d_{ne}(G) = t$, for some positive integer t. Let $F = \{D_1, D_2, ..., D_t\}$ be a near equitable domatic partition of G. Obviously, $|V(G)| = \sum_{i=1}^{t} |D_i|$ and from definition of near equitable domination number $\gamma_{ne}(G)$, we have $\gamma_{ne}(G) \leq |D_i|$, $i = 1, 2, ..., t$. Hence, $p = \sum_{i=1}^{t} |D_i| \geq t\gamma_{ne}(G)$. Thus, $d_{ne}(G) \leq \frac{p}{\gamma_{ne}(G)}$. \hfill \Box

Theorem 7.2.38. For any connected graph G of order p, $p \geq 2$, $d_{ne}(G) \leq \lceil \frac{p}{2} \rceil$.

Proof. Let G be a connected graph of order p, $p \geq 2$. If $d_{ne}(G) = 1$. Then $d_{ne}(G) \leq \frac{p}{2}$.

If $\gamma_{ne}(G) \geq 2$, then, by Theorem 7.2.37, $d_{ne}(G) \leq \lceil \frac{p}{2} \rceil$. \hfill \Box
7.3 Connected near equitable domination in graphs

We define a connected near equitable dominating set of a graph as follows.

Definition 7.3.1. A near equitable dominating set D of a graph G is said to be a connected near equitable dominating set if the induced subgraph $\langle D \rangle$ is connected. The minimum cardinality of such a connected near equitable dominating set is called the connected near equitable domination number of G and is denoted by $\gamma_{cne}(G)$.

7.3.1 Main Results

Observation 7.3.2. For any connected graph G, $\gamma(G) \leq \gamma_{ne}(G) \leq \gamma_{cne}(G)$.

Observation 7.3.3. For any connected graph G, $\gamma_{c}(G) \leq \gamma_{cne}(G)$.

Now, we proceed to compute $\gamma_{cne}(G)$ for some standard graphs.

Observation 7.3.4. For any path P_{p}, $p \geq 3$, $\gamma_{cne}(P_{p}) = \gamma_{c}(P_{p}) = p - 2$.

Observation 7.3.5. For any cycle C_{p}, $\gamma_{cne}(C_{p}) = \gamma_{c}(C_{p}) = p - 2$.

Observation 7.3.6. For any complete graph K_{p}, $\gamma_{cne}(K_{p}) = \gamma_{ne}(K_{p}) = \left\lfloor \frac{p}{2} \right\rfloor$.

Observation 7.3.7. For any star $K_{1,n}$, $\gamma_{cne}(K_{1,n}) = \gamma_{ne}(K_{1,n}) = n - 1$.

Observation 7.3.8. For the double star $S_{n,m}$,

$$
\gamma_{cne}(S_{n,m}) = \gamma_{ne}(S_{n,m}) = \begin{cases}
2, & \text{if } n, m \leq 2; \\
2n + 2m - 2, & \text{if } n, m \geq 2 \text{ and } n \text{ or } m \geq 3.
\end{cases}
$$
Observation 7.3.9. For the complete bipartite graph $K_{n,m}$ with $1 < m \leq n$,

$$
\gamma_{cne}(K_{n,m}) = \gamma_{ne}(K_{n,m}) = \begin{cases}
 m - 1, & \text{if } n = m \text{ and } m \geq 3; \\
 m, & \text{if } n - m = 1; \\
 n - 1, & \text{if } n - m \geq 2.
\end{cases}
$$

Observation 7.3.10. For the wheel $W_{1,n}$, $n \geq 5$, $\gamma_{cne}(W_{1,n}) = \gamma_{ne}(W_{1,n}) = \lceil \frac{n}{3} \rceil + 1$.

Theorem 7.3.11. Let T be a tree in which every non-pendant vertex is either a support or adjacent to a support and every non-pendant vertex which is support is adjacent to two pendant vertices. Then $\gamma_{cne}(T) = \gamma_{ne}(T) = \gamma_{c}(T)$.

Proof. Let D denote the set of all non-pendant vertices of T. Clearly, D is a minimum connected dominating set. Since the out degree of any vertex of D is at most two, it follows that D is a minimum near equitable dominating set. Since the induced subgraph $\langle D \rangle$ is connected, D is a connected near equitable dominating set. Therefore, $\gamma_{cne}(T) \leq \gamma_{ne}(T)$. But by Observation 7.3.2, $\gamma_{ne}(T) \leq \gamma_{cne}(T)$. Hence, $\gamma_{cne}(T) = \gamma_{ne}(T)$. Since D is a minimum connected dominating set, it follows that $\gamma_{cne}(T) \leq \gamma_{c}(T)$. But by Observation 7.3.3, $\gamma_{c}(T) \leq \gamma_{cne}(T)$. Hence, $\gamma_{cne}(T) = \gamma_{c}(T)$. Thus, $\gamma_{cne}(T) = \gamma_{ne}(T) = \gamma_{c}(T)$. \qed

Theorem 7.3.12. For any connected graph G of order p, $p \leq 4$, $\gamma_{cne}(G) = \gamma_{ne}(G)$.

Proof. Let G be a connected graph of order p, $p \leq 4$. Then G is one of the following graphs: P_2, P_3, P_4, K_3, $K_{1,3}$, C_4, $K_3 \cdot K_2$, K_4 or $K_4 - e$, where e is an edge of K_4.
But for each of these graphs, $\gamma_{cne}(G) = \gamma_{ne}(G)$.

Analogous to the definition of complete graph, we define a near equitably complete graph as follows.

Definition 7.3.13. A graph G is called a near equitably complete graph if for any near equitable dominating set D of G, $|\text{od}_D(u) - \text{od}_{V-D}(v)| \leq 1$, for all $u \in D$, and $v \in V - D$. Furthermore, if the induced subgraph $\langle D \rangle$ is connected, then G is called a connected near equitably complete graph.

Example 7.3.14. The standard graphs P_n, C_n and K_n are near equitably complete graphs and connected near equitably complete graphs. But in the graph shown in Figure 7.3.1, $D = \{v_1, v_4, v_6\}$ is a near equitable dominating set and $D_1 = \{v_2, v_3, v_6\}$ is a connected near equitable dominating set. With respect to D and D_1, this graph is neither near equitably complete nor connected near equitably complete.
Analogous to the definition of an isolated vertex of a graph, we define an isolated near equitable vertex of a near equitable dominating set D as follows.

Definition 7.3.15. Let D be a near equitable dominating set of a graph G. Then a vertex $u \in D$ is called an isolated near equitable vertex if $|\text{od}_D(u) - \text{od}_{V-D}(v)| \geq 2$, for every vertex $v \in V - D$. $I_{oe}(D)$ be the set of all isolated near equitable vertices of D.

Example 7.3.16. The center vertex of the wheel $W_{1,n}$, $n \geq 8$ is an isolated near equitable vertex, with respect to any near equitable dominating set of $W_{1,n}$.

Proposition 7.3.17. Let D be a near equitable dominating set of a graph G. Then $I_s \subseteq I_{oe} \subseteq D$ if and only if every vertex $v \in V - D$, $\text{od}_{V-D}(v) \geq 2$.

Proof. Let D be a near equitable dominating set of G. Suppose that every vertex $v \in V - D$, $\text{od}_{V-D}(v) \geq 2$. Then any isolated vertex of G is an isolated near equitable vertex. Therefore, $I_s \subseteq I_{oe} \subseteq D$.

Conversely, if $I_s \subseteq I_{oe} \subseteq D$, then any isolated vertex is an isolated near equitable vertex. Therefore, for any $u \in I_s$ and $v \in V - D$, $|\text{od}_{V-D}(v) - \text{od}_{I_s}(u)| \geq 2$. Thus, $\text{od}_{V-D}(v) \geq 2$. \qed

Proposition 7.3.18. A near equitably complete graph G contains no isolated near equitable vertex.

Remark 7.3.19. The converse of Proposition 7.3.18 is not true. The graph in Figure 7.3.1 is neither near equitably complete nor contains isolated near equitable vertex.
Proposition 7.3.20. Let G be a connected graph such that the connected near equitable dominating set is a connected near equitable pendant dominating set. Then G is a connected near equitably complete graph.

Proof. Let D be a connected near equitable dominating set of a connected graph G. Since a connected near equitable dominating set is connected near equitable pendant dominating set, it follows that for any $u \in D$ and $v \in V - D$, $od_D(u) = 1$ and $od_{V - D}(v) \leq 2$. Hence, $|od_D(u) - od_{V - D}(v)| \leq 1$. Thus, G is a connected near equitably complete graph. \square

Theorem 7.3.21. A tree T is a connected near equitably complete graph.

Proof. Let D be a connected near equitable dominating set of a tree T. Then for every vertex $u \in D$ and $v \in V - D$, $od_D(u) \leq 2$ and $od_{V - D}(v) = 1$. Therefore, $|od_D(u) - od_{V - D}(v)| \leq 1$. Thus, T is a near connected equitably complete graph. \square

Remark 7.3.22. A tree need not be near equitably complete graph, as shown in Figure 7.3.2.

![Figure 7.3.2](image-url)
$D = \{v_2, v_3, v_6, v_8\}$ is a near equitable dominating set and $D_1 = \{v_2, v_3, v_5, v_6, v_8\}$ is a connected near equitable dominating set. The graph shown in Figure 7.3.2 is connected near equitably complete but not near equitably complete.

Definition 7.3.23. Let G be a graph. Then the near equitable dominating set D of G is called a 1- near equitable dominating set if for every vertex $v \in V - D$, there exists exactly one vertex $u \in D$ such that u is adjacent to v and $|\text{od}_D(u) - \text{od}_{V-D}(v)| \leq 1$.

Example 7.3.24. A near equitable dominating set D of tK_2, $t \geq 1$ is a 1- near equitable dominating set.

Proposition 7.3.25. A connected near equitable dominating set of a tree is a 1- near equitable dominating set.

7.3.2 Bounds

In this subsection, we present sharp bounds for $\gamma_{cne}(G)$.

Theorem 7.3.26. Let G be a connected graph of order p, $p \geq 3$. Then

$$\gamma_{cne}(G) \leq p - 2.$$

From Observation 7.3.3, Theorem 1.5.10 and Theorem 7.3.26, we have the following theorem.
Theorem 7.3.27. For any connected graph G of order p, $p \geq 3$ with maximum degree Δ,
\[
\left\lfloor \frac{p}{\Delta+1} \right\rfloor \leq \gamma_{cne}(G) \leq p - 2.
\]
The bound is sharp for P_3.

Theorem 7.3.28. For any connected graph G of order p, $p \geq 3$, $\gamma_{cne}(G) \leq 2q - p$.

Proof. By Theorem 7.3.26, $\gamma_{cne}(G) \leq p - 2 = 2(p - 1) - p \leq 2q - p$. □

Theorem 7.3.29. For any tree T, $\gamma_{cne}(T) \geq p - e$, where e is the number of pendant vertices.

Proof. Let D be a minimum connected near equitable dominating set of T. Then D contains all non-pendant vertices of T and all pendant vertices except two for each support vertex. Therefore, $\gamma_{cne}(T) \geq p - e$. □

Corollary 7.3.30. For any tree T, $\gamma_{cne}(T) = p - e$ if and only if any support vertex is adjacent to at most two pendant vertices.
7.4 Total near equitable domination in graphs

We define a total near equitable dominating set of a graph as follows.

Definition 7.4.1. A near equitable dominating set D of a graph G is said to be a total near equitable dominating set (tned-set) if every vertex $w \in V$ is adjacent to an element of D. The minimum cardinality of tned-set of G is called a total near equitable domination number and is denoted by $\gamma_{tne}(G)$.

Definition 7.4.2. A subset D of $V(G)$ is a minimal total near equitable dominating set if D is a total near equitable dominating set but no proper subset of D is total near equitable dominating set.

7.4.1 Main Results

We note that $\gamma_{tne}(G)$ is defined only for graphs without isolated vertices and, since each total near equitable dominating set is a near equitable dominating set, we have $\gamma_{ne}(G) \leq \gamma_{tne}(G)$. Since each total near equitable dominating set is a total dominating set, we have $\gamma_t(G) \leq \gamma_{tne}(G)$. The bound is sharp for nK_2, $n \geq 1$. In fact, $\gamma_{tne}(G) = \gamma_t(G) = |V|$, for $G = nK_2$, it is easy to see however, that nK_2, $n \geq 1$ is the only graph with this property. Furthermore, the difference $\gamma_{tne}(G) - \gamma_t(G)$ can be arbitrarily large in a graph G. It can be easily checked that $\gamma_t(K_{1,n}) = 2$, while $\gamma_{tne}(K_{1,n}) = p - 2$.
We now proceed to compute $\gamma_{tne}(G)$ for some standard graphs.

Observation 7.4.3. For any path P_p, $p \geq 4$,

$$
\gamma_{tne}(P_p) = \gamma_t(P_p) = \begin{cases}
\frac{p}{2} + 1, & \text{if } p \equiv 2 \pmod{4}; \\
\left\lceil \frac{p}{2} \right\rceil, & \text{otherwise.}
\end{cases}
$$

Observation 7.4.4. For any cycle C_p, $p \geq 4$,

$$
\gamma_{tne}(C_p) = \gamma_t(C_p) = \begin{cases}
\frac{p}{2} + 1, & \text{if } p \equiv 2 \pmod{4}; \\
\left\lceil \frac{p}{2} \right\rceil, & \text{otherwise.}
\end{cases}
$$

Proposition 7.4.5. For the complete graph K_p, $p \geq 4$, $\gamma_{tne}(K_p) = \gamma_{ne}(K_p) = \left\lfloor \frac{p}{2} \right\rfloor$.

Proposition 7.4.6. For the double star $S_{n,m}$,

$$
\gamma_{tne}(S_{n,m}) = \gamma_{ne}(S_{n,m}) = \begin{cases}
2, & \text{if } n, m \leq 2; \\
2n - 4, & \text{if } n, m \geq 2 \text{ and } n \text{ or } m \geq 3.
\end{cases}
$$

Proposition 7.4.7. For the complete bipartite graph $K_{n,m}$ with $2 < m \leq n$,

$$
\gamma_{tne}(K_{n,m}) = \gamma_{ne}(K_{n,m}) = \begin{cases}
m - 1, & \text{if } n = m \text{ and } m \geq 3; \\
m, & \text{if } n - m = 1; \\
n - 1, & \text{if } n - m \geq 2.
\end{cases}
$$

Proposition 7.4.8. For the wheel $W_{1,n}$, $n \geq 5$,

$$
\gamma_{tne}(W_{1,n}) = \gamma_{ne}(W_{1,n}) = \left\lceil \frac{n}{3} \right\rceil + 1
$$
Theorem 7.4.9. Let T be a tree of order p, $p \geq 4$ in which every non-pendant vertex is either a support or adjacent to a support and every non-pendant vertex which is support is adjacent to at least two pendant vertices. Then $\gamma_{tne}(T) = \gamma_{ne}(T) = \gamma_{cne}(T)$.

Proof. Let T be a tree of order p, $p \geq 4$. Suppose that D is a set of all non-pendant vertices and all pendant vertices except two for each support of T. Clearly, D is a minimum near equitable dominating set. Since any support vertex is adjacent to at least two pendant vertices, it follows that $\langle D \rangle$ is connected. Therefore, D is minimum connected near equitable dominating set and hence it is a minimum tned-set. So, $\gamma_{cne}(T) \leq \gamma_{ne}(T)$ and $\gamma_{tne}(T) \leq \gamma_{ne}(T)$. Since $\gamma_{ne}(T) \leq \gamma_{tne}(T)$ and by Observation 7.3.2, $\gamma_{ne}(T) \leq \gamma_{cne}(T)$, it follows that $\gamma_{tne}(T) = \gamma_{ne}(T) = \gamma_{cne}(T)$. \qed

We now proceed to obtain a characterization of a minimal total near equitable dominating set.

Theorem 7.4.10. A total near equitable dominating set D of a graph G is a minimal total near equitable dominating set if and only if one of the following holds:

(i) D is a minimal near equitable dominating set.

(ii) There exist $x, y \in D$ such that $N(y) \cap N(D - \{x\}) = \phi$.

Proof. Suppose that D is a minimal tned-set of G. Then for any $u \in D$, $D - \{u\}$ is not tned-set. If D is a minimal near equitable dominating set, then we are done. If not, then there exists a vertex $x \in D$ such that $D - \{x\}$ is a near equitable dominating
set, but not a tned-set. Therefore, there exists a vertex \(y \in D - \{x\} \) such that \(y \) is an isolated vertex in \(\langle D - \{x\} \rangle \). Hence, \(N(y) \cap N(D - \{x\}) = \emptyset \).

Conversely, let \(D \) be a tned-set and (i) holds. Suppose \(D \) is not a minimal tned-set. Then there exists \(u \in D \) such that \(D - \{u\} \) is a tned-set. So, \(D \) is not a minimal near equitable dominating set, a contradiction. Next, suppose that \(D \) is a tned-set and (ii) holds. Then there exist \(x, y \in D \) such that \(N(y) \cap N(D - \{x\}) = \emptyset \). Suppose to the contrary, \(D \) is not a minimal tned-set. Then there exists \(u \in D \) such that \(D - \{u\} \) is a tned-set. So, \(\langle D - \{u\} \rangle \) does not contain any isolated vertex. Therefore, for every \(x, y \in D \), \(N(y) \cap N(D - \{x\}) \neq \emptyset \), a contradiction. \(\blacksquare \)

7.4.2 Bounds

Analogous to Theorem 7.2.26, we have the following theorem.

Theorem 7.4.11. Let \(G \) be a connected graph of order \(p \), \(p \geq 4 \). Then

\[
\gamma_{tne}(G) \leq p - 2.
\]

The star graph \(G \cong K_{1,n} \) is an example of a connected graph for which \(\gamma_{tne}(G) = 2n - (\Delta(G) + 3) \). The following theorem shows that, this is the best possible upper bound for \(\gamma_{tne}(G) \).
Theorem 7.4.12. If G is connected of order p, $p \geq 4$, then

$$\gamma_{tne}(G) \leq 2p - (\Delta(G) + 3).$$

Proof. Let G be a connected graph of order p, $p \geq 4$. Then by Theorem 7.4.11,

$$\gamma_{tne}(G) \leq p - 2 = 2p - (p - 1 + 3) \leq 2p - (\Delta(G) + 3).$$

\[\square\]

Theorem 7.4.13. If G is a graph of order p, $p \geq 4$ and $\Delta(G) \leq p - 2$ such that both G and \overline{G} are connected, then $\gamma_{tne}(G) + \gamma_{tne}(\overline{G}) \leq 3p - 6$.

Proof. Let G be a connected graph. Since $\Delta(G) \leq p - 2$, by Theorem 7.4.11,

$$\gamma_{tne}(G) \leq 2p - (\Delta(G) + 4) \leq 2p - (\delta(G) + 4).$$

Since \overline{G} is connected, by Theorem 7.4.12,

$$\gamma_{tne}(\overline{G}) \leq 2p - (\Delta(\overline{G}) + 3),$$

it follows that

$$\gamma_{tne}(G) + \gamma_{tne}(\overline{G}) \leq 2p - (\delta(G) + 4) + 2p - (\Delta(\overline{G}) + 3)$$

$$= 4p - (\delta(G) + \Delta(\overline{G})) - 7$$

$$= 3p - 6.$$

\[\square\]

The bound is sharp for C_4.
7.5 Strong total near equitable domination in graphs

We define a strong total near equitable dominating set of a graph as follows.

Definition 7.5.1. A near equitable dominating set D of a graph G is said to be a strong total near equitable dominating set (stned-set) if for every vertex $v \in D$ there exists $u \in D$ such that u is adjacent to v and $|\text{od}_D(u) - \text{od}_D(v)| \leq 1$. The minimum cardinality of stned-set of G is called the strong total near equitable domination number of G and is denoted by $\gamma_{stne}(G)$.

Definition 7.5.2. A subset D of $V(G)$ is a minimal strong total near equitable dominating set if D is strong total near equitable dominating set but no proper subset of D is strong total near equitable dominating set.

7.5.1 Main Results

We note that $\gamma_{stne}(G)$ is defined only for graphs without isolated vertices and, since each total near equitable dominating set is a near equitable dominating set and each strong total near equitable dominating set is a total near equitable dominating set, we have $\gamma_{tne}(G) \leq \gamma_{tne}(G) \leq \gamma_{stne}(G)$.

Proposition 7.5.3. Let D be a strong total near equitable dominating set of G. Then for every component C of G, $D \cap V(C)$ is a strong total near equitable dominating set of C.
Proof. Let D be a strong total near equitable dominating set of G and C be a component of G. Then for every vertex $v \in C$, there exists $u \in D$ such that u and v are adjacent and $|od_D(u) - od_C(v)| \leq 1$. Thus, $D \cap V(C)$ is a strong total near equitable dominating set of C.

\[\text{Theorem 7.5.4.} \quad \text{Let } T \text{ be a tree of order } p. \text{ Then } \gamma_{stne}(T) = p - 1 \text{ if and only if } T \text{ is a star.} \]

Proof. Let T be a tree of order p. Since T is a star, $\gamma_{stne}(T) = p - 1$.

Conversely, let T be a tree such that $\gamma_{stne}(T) = p - 1$. Suppose to the contrary, T is not star. Then T contains more than one support vertex, so that $\gamma_{stne}(T) \leq p - 2$, a contradiction. Thus, T is a star.

\[\text{Theorem 7.5.5.} \quad \text{For any cycle } C_p, \gamma_{stne}(C_p) = p - 2 \text{ if and only if } p = 4, 5, 6. \]

Proof. Clearly, if $G \cong C_p$, $p = 4, 5, 6$, then $\gamma_{stne}(C_p) = p - 2$.

Conversely, suppose that $\gamma_{stne}(C_p) = p - 2$. Since $G \cong C_p$. Assume that $p \neq 4, 5, 6$.

If $p = 3$, then $\gamma_{stne}(C_3) = 2 \neq 1$. If $p = 7$, then $\gamma_{stne}(C_7) = 4 < 5$. Similarly, for $p \geq 8$, $\gamma_{stne}(C_p) < p - 2$.

\[\text{Definition 7.5.6.} \quad \text{A graph } G \text{ is a near equitably balanced graph if for any near equitable dominating set } D \text{ of } G, \od_D(u) = \od_D(v), \text{ for all } u, v \in D. \]
Example 7.5.7. A cycle C_4 is a near equitably balanced graph. But a path P_4 is not near equitably balanced graph.

Remark 7.5.8. Let G be a graph such that any near equitable dominating set of G is a near equitable pendant dominating set. Then G is a near equitably balanced graph.

Theorem 7.5.9. Let G be a near equitably balanced graph. Then D is a strong total near equitable dominating set of G if and only if D is a total near equitable dominating set.

Proof. Let G be a near equitably balanced graph. Then for any near equitable dominating set D of G, $od_D(u) = od_D(v)$, for all $u, v \in D$. Suppose that D is a total near equitable dominating set of G. Then for any $u \in D$, there exists $v \in D$ such that u is adjacent to v and $|od_D(u) - od_D(v)| \leq 1$. Therefore, D is a strong near equitable dominating set.

Conversely, If D is a strong near equitable dominating set, then D is a total near equitable dominating set.

Theorem 7.5.10. Let G be a near equitably balanced graph and D be a near equitable dominating set of G. Then for any $w, w' \in V - D$, $|od_{V-D}(w) - od_{V-D}(w')| \leq 2$.

Proof. Let D be a near equitable dominating set of a near equitably balanced graph G. Suppose that w, w' are any two vertices of $V - D$ such that $od_{V-D}(w) \leq od_{V-D}(w')$. Since D is a near equitable dominating set of G, it follows that for any $u \in D$,

od_{V-D}(w) \leq od_D(u) \leq od_{V-D}(w') such that |od_D(u) - od_{V-D}(w)| \leq 1 and
|od_D(u) - od_{V-D}(w')| \leq 1. Therefore, |od_{V-D}(w) - od_{V-D}(w')| \leq 2. \qed

Analogous to the definition of regular graph, we define a near equitably regular graph as follows.

Definition 7.5.11. Let G be a near equitably balanced graph and D be a near equitable dominating set of G. Then G is a near equitably regular graph if for any $u \in D$ and $v \in V - D$, $od_D(u) = od_{V-D}(v)$.

Example 7.5.12. A cycle C_4 is a near equitably regular graph.

Theorem 7.5.13. Let G be a near equitably regular graph and D be a near equitable dominating set of G such that the induced subgraph $\langle V - D \rangle$ is connected. Then $V - D$ is strong total near equitable dominating set.

Proof. Let G be a near equitably regular graph. Then for any near equitable dominating set D, $od_D(u) = od_D(v) = od_{V-D}(w) = od_{V-D}(w') \geq 1$ for all $u, v \in D$ and for all $w, w' \in V - D$. Therefore, for any $u \in D$, $od_D(u) \geq 1$. Since the induced subgraph $\langle V - D \rangle$ is connected, it follows that $V - D$ is a strong total near equitable dominating set. \qed

Definition 7.5.14. A near equitably regular graph with vertices having out degree k is called a k-near equitably regular graph or near equitably regular graph of out degree k.
Definition 7.5.15. A k-regular bipartite graph is a bipartite graph $G = (V_1, V_2, E)$ in which all vertices have the same degree k.

Theorem 7.5.16. A k-regular graph is a k-near equitably regular graph if and only if it is a k-regular bipartite graph or a totally disconnected graph.

Proof. Let G be a k-regular graph. Then $\deg_G(u) = k$, for all $u \in V(G)$. Suppose that G is a k-near equitably regular graph. Then $\od_D(u) = \od_D(v) = \od_{V-D}(w) = k$, for all $u, v \in D$ and $w \in V - D$. Therefore, both subgraphs (D) and $(V - D)$ induced by D and $V - D$, respectively are totally disconnected. Thus, G is totally disconnected for $k = 0$ and k-regular bipartite graph for $k \geq 1$.

Conversely, if G is a k-regular bipartite graph or a totally disconnected graph, then G is k-near equitably regular graph. \hfill \qed

Theorem 7.5.17. Let G be a near equitably regular graph and D be a total near equitable dominating set of G. Then D is a strong total near equitable set.

Proof. Suppose that D is a total near equitable dominating set of a near equitably regular graph G. Then for any $v \in V(G)$, there exists $u \in D$ such that v is adjacent to u and $\od_D(u) = \od_D(v)$ or $\od_D(u) = \od_{V-D}(v)$. Therefore, D is a strong total near equitable set. \hfill \qed

Definition 7.5.18. Let D be a near equitable dominating set of a graph G. Then G is said to be a near equitably bi-regular graph if for any $u, v \in D$ and $w \in V - D$, $\od_D(u) = \od_D(v) = \od_{V-D}(w) \pm 1$.

From definitions of a near equitably regular graph and near equitably bi-regular graph, we have the following propositions.

Proposition 7.5.19. Any complete graph K_p is a near equitably bi-regular graph.

Proposition 7.5.20. Any near equitably bi-regular graph is a near equitably balanced graph.

Proposition 7.5.21. Let D be a near equitable pendant dominating set of a graph G. Then for any $u \in D$ and $v \in V - D$, $od_D(u) \leq od_{V - D}(v) \leq 2$.

Theorem 7.5.22. Let D be a near equitable pendant dominating set of a graph G.

Then

(i) G is a near equitably regular graph if and only if $od_{V - D}(v) = 1$.

(ii) G is a near equitably bi-regular graph if and only if $od_{V - D}(v) = 2$.

Theorem 7.5.23. Let $G(p, q)$ be a graph and D be a near equitable dominating set of G such that the subgraphs $\langle D \rangle$ and $\langle V - D \rangle$ induced by D and $V - D$, respectively form bipartite graphs. Then for any $u \in D$, $\sum_{u \in D} od_D(u) = q$.

Proof. Suppose that D is a near equitable dominating set of G such that the subgraphs $\langle D \rangle$ and $\langle V - D \rangle$ induced by D and $V - D$, respectively form bipartite graphs, then $od_D(u) = deg(u)$ and $od_{V - D}(v) = deg(v)$, for all $u \in D$ and $v \in V - D$. Since $\sum_{w \in V} deg(w) = 2q$, we have $\sum_{u \in D} od_D(u) = \frac{1}{2} \sum_{w \in V} deg(w) = q$. \square
We now proceed to obtain a characterization of minimal stned-sets.

Theorem 7.5.24. Let \(D \) be a dominating set of a graph \(G \). If \(D \) is a stned- set, then \(D \) is a minimal stned- set if and only if one of the following holds:

1. \(D \) is a minimal near equitable dominating set.

2. For any two adjacent vertices \(x, y \in D \), \(\text{od}_D(x) > \text{od}_D(y) \) and for any vertex \(v \in D \) different from \(x \) and \(y \), the set \(U_v \) is nonempty, where

\[
U_v = \{ x, y \in D : \text{od}_D(x) - \text{od}_D(y) = 1 \text{ and } v \text{ is adjacent to } x \text{ but not adjacent to } y \}.
\]

Proof. Suppose that \(D \) is a minimal strong total near equitable dominating set of \(G \). Then for any \(v \in D \), \(D - \{v\} \) is not strong total near equitable dominating set. If \(D \) is a minimal near equitable dominating set, then we are done. If not, then for any \(v \in D \), let \(U_v = \{ x, y \in D, \text{od}_D(x) - \text{od}_D(y) = 1 \text{ and } v \text{ is adjacent to } x \text{ but not adjacent to } y \} \).

There exist \(x, y \in D - \{v\} \) such that \(|\text{od}_{D - \{v\}}(x) - \text{od}_{D - \{v\}}(y)| > 1 \). If both \(x, y \) are adjacent to \(v \), then \(|\text{od}_{D - \{v\}}(x) - \text{od}_{D - \{v\}}(y)| = |\text{od}_D(x) - \text{od}_D(y)| \leq 1 \), a contradiction. If both \(x, y \) are not adjacent to \(v \), then \(|\text{od}_{D - \{v\}}(x) - \text{od}_{D - \{v\}}(y)| = |\text{od}_D(x) - \text{od}_D(y)| \leq 1 \), a contradiction. So, \(v \) is adjacent to precisely one vertex of \(\{x, y\} \). Without loss of generality, assume that \(v \) is adjacent to \(x \) but not adjacent to \(y \).

Then,

\[
1 < |\text{od}_{D - \{v\}}(x) - \text{od}_{D - \{v\}}(y)| = |\text{od}_D(x) + 1 - \text{od}_D(y)| \leq |\text{od}_D(x) - \text{od}_D(y)| + 1
\]
So, $|od_D(x) - od_D(y)| > 0$. But $|od_D(x) - od_D(y)| \leq 1$. Hence, $|od_D(x) - od_D(y)| = 1$. Therefore, $od_D(x) - od_D(y) = 1$. Thus, U_v is nonempty.

Conversely, let D be a strong total near equitable dominating set and suppose that D is a minimal near equitable dominating set. Suppose to the contrary, D is not a minimal strong total near equitable dominating set. Then there exists $v \in D$ such that $D - \{v\}$ is a strong total near equitable dominating set. So, D is not a minimal near dominating set, a contradiction. Next, suppose that D is a strong total near equitable dominating set and (2) holds. Then for every $v \in D$, U_v is nonempty. So, for every $v \in D$, there exist $x, y \in D$ such that v is adjacent to precisely one vertex of $\{x, y\}$, and $od_D(x) - od_D(y) = 1$. Suppose to the contrary, D is not a minimal strong total near equitable dominating set. Then there exists $v \in D$ such that $D - \{v\}$ is a strong total near equitable dominating set. So, $|od_{D-\{v\}}(x) - od_{D-\{v\}}(y)| \leq 1$. Now, if $|od_{D-\{v\}}(x) - od_{D-\{v\}}(y)| = 1$, then $|od_{D-\{v\}}(x) - od_{D-\{v\}}(y)| = |od_D(x) - od_D(y)|$, either $\{x, y\} \subseteq N(v)$, or $\{x, y\} \cap N(v) = \phi$, a contradiction.

\section*{7.5.2 Bounds}

\textbf{Theorem 7.5.25.} For a connected graph G of order p, $p \geq 4$, $\gamma_{stne}(G) \leq p - 1$. Furthermore, equality holds for a star graph.

\textit{Proof.} It is enough to show that for any minimum strong total near equitable dominating set D of G, $|V - D| \geq 1$. Since G is a connected graph of order p,
$p \geq 4$, it follows that $\delta(G) \geq 1$. Suppose $|V - D| = 0$, it follows that $|D| = p$. Therefore, G is totally disconnected, a contradiction. \hfill \Box \\

Theorem 7.5.26. Let G be a near equitably regular graph and D be a near equitable dominating set of G such that the induced subgraph $\langle V - D \rangle$ is connected. Then $\gamma_{stne}(G) \leq p - \gamma(G)$. Furthermore, equality holds for C_4.

Proof. Let G be a near equitably regular graph. By Theorem 7.5.13, $V - D$ is a strong total near equitable dominating set. Therefore, $\gamma_{stne}(G) \leq |V - D| \leq p - \gamma(G)$. \hfill \Box