ACKNOWLEDGEMENTS

Foremost, I would like to record my gratitude to Prof (Dr) G K Tyagi, Director-Principle, M.L.V. Textile & Engineering College, Bhilwara, for his supervision, advice, and guidance from the very early stage of this research as well as giving me extraordinary experiences throughout the work. Above all and the most needed, he provided me unflinching encouragement and support in various ways. His truly scientist intuition has made him as a constant oasis of ideas and passions in textile, which exceptionally inspire and enrich my growth as a student, a researcher and a teacher. I am indebted to him more than he knows. I would also like to express my sincere gratitude to my co-guide Dr R Chattopadhyay, Professor, Department of Textile Technology, Indian Institute of Technology, Delhi, for the continuous support of my study and research, for his patience, motivation, enthusiasm, and immense knowledge. His guidance helped me in all the time of research and writing of this thesis.

I am deeply thankful to Prof (Dr) R P Jamdagni, Director, TITS, Bhiwani, for his assistance and co-operation extended during course of this study and allow me to use all the facilities available in the department and giving permission to work according to my own schedule in the department at odd hours.

I am also thankful to Dr S Dhamija, Head of Department for extending a helping hand whenever needed. I take this opportunity to thanks Sh P D Kaushik, Vice President, and Sh B S Bedwal, Spinning Manager, T.I.T. Mill for providing necessary facilities during preparing the samples at different course of time.

This work would not have started if I hadn’t obtained the fibres for various studies at the first place. I am grateful to Mr. Sanjay Sharma (VP, Marketing, LNJB Group), Mr. Sadanand Gupta (Vardhman Group) and Mr Dherender Rathore (Winsome Group) for arranging fibre samples used in the study.

I gratefully acknowledge the All India Council of Technical Education (AICTE), Government of India, for sponsoring the project for my PhD research under Research Promotion Scheme.

I am greatly thankful to all staff members of spinning laboratory and testing lab. Special thankful mention must be made of Mr Puran Sharma and Mr Jiya Lal who extended invaluable help in this regard. I would also like to extend my thanks to other
faculty and staff of the institute, and to my fellow graduate students for their assistance and kindness in completing my study.

I am thankful to all my friends and would like to specially mention Dr Neeraj Kaushik, Dr Asis Patnaik, Dr Rajkishore Nayak, Dr Ajit Pattanayak and Dr Asimanand Khandual for their valuable help at various stages of this work.

My parents deserve special mention for their inseparable support and prayers. They along with my sisters and parents-in-law have given me their unequivocal support throughout, as always, for which my mere expression of thanks likewise does not suffice. Words fail me to express my appreciation to my wife Chitra for her love, patience, sacrifice and kind indulgence throughout this course of work. I also credit my children, Harshit and Molik, for inspiring and amazing me every day.

Finally, I would like to thank everybody who is important to the successful realization of this thesis, as well as expressing my apology that I could not mention personally one by one.

June, 2012

Ashvani Goyal
ABSTRACT

A fundamental and classical problem in textile material science is the connection between strength of fibres and yarn, and so it is significant both in theory and in practice to establish this relationship. The strength of a yarn depends on strength of the constituent fibres. However, full realization of fibre strength in yarn strength is not realized in commercial practice as some fibres break, while others slip. The nature of fibre arrangement in the yarn is another influencing variable. Thus fibre properties and yarn structural parameters play a significant role in determining the tensile behaviour, namely, strength, modulus, elasticity, yield stress, work of rupture, elongation and low stress properties of the spun yarn. While the ring spinning process is known to give a yarn in which the fibres are believed to be more effectively interlocked, the unconventional spinning technologies namely rotor and air-jet deliver yarn structures with inadequate fibre entanglement. Because of the geometrical variations in the structure of ring, rotor and air-jet spun yarn, the balance between fibre slippage and fibre breakage during tensile loading is altered to different degrees.

Yarn structural development is further complicated when the yarn is spun from blends of fibre with dissimilar properties and type. Blending of different fibres is a very common practice in spinning industries to obtain desirable range of properties to suit end-use requirements and economic considerations. Both the advent of new cellulosic fibres likes tencel and availability of fibres with different types and properties have opened up a rich diversity of materials to be blended. Tencel fibre blends well with both natural and synthetic fibres such as cotton, polyester, lycra or wool adding comfort and performance. So far, there is no extensive survey comparing the characteristics of tencel blended yarns spun on ring, rotor and MJS spinning systems. The present research focuses on investigating the quality aspects of tencel-cotton and tencel-polyester ring-, rotor- and MJS yarns.

In the first part of the study, the role of twist in ring spinning was analysed. For this the properties of tencel-polyester and tencel-cotton blended yarns produced with five different blend ratios and six different twist factors have been studied. An attempt has also been made to optimize the twist factor for different yarn characteristics viz. tenacity, breaking extension, unevenness and imperfection, hairiness and flexural rigidity. The experimental results clearly indicate that optimum
twist factor is different for the different properties analysed and explanation for this is
well documented.

Because of the geometrical variations in the structure of ring-, rotor- and air-
jet spun yarns, the substrate characteristics are different for each spinning technology.
With this in mind, the second part of the study focuses on the comparison of physical
characteristics of tencel-polyester and tencel-cotton yarns spun on ring, rotor and air-
jet spinning machines in relation to fibre composition. The behaviour of tencel fibre in
blends with polyester and cotton fibres and its proportion for the physical
characteristics of ring, rotor and MJS yarns has also been explained.

Low stress properties and elastic behaviour of yarns are the another major
factors limiting their processibility and end-use performance. With this in mind, the
low-stress and recovery properties of ring, rotor and MJS yarns spun from tencel-
polyester and tencel-cotton mix have been studied. To gain a better insight, tencel-
polyester and tencel-cotton yarns have been produced with varying fibre
compositions. Tensile energy, tensile resilience, packing density, structural integrity,
abrasion resistance and recovery properties (Immediate elastic recovery, delayed
recovery and permanent set) at 2% and 4% extension level were measured and
compared for three types of yarns produced from both tencel mixes at different blend
proportion.

In the last part of the study, the efficiency of the linear and quadratic rule of
mixture (ROM) to predict the mechanical properties of tencel blended ring-, rotor-
and MJS yarns has been applied with the help of mixture experiment model. A
mixture experiment used involves the study of performance of various mixture
formed by mixing two or more components. The linear and quadratic canonical
polynomials for two components mixture model have been considered. If the
blending of components is strictly additive then linear canonical polynomials is
most appropriate representation of the surface, and when there is a curvature in the
mixture surface then canonical polynomial of degree two is taken as
representation of the surface. The tensile strength, breaking elongation, flexural
rigidity and abrasion resistance of tencel-polyester and tencel-cotton blended yarns
have been compared with the values predicted using linear and quadratic rule of
mixture (ROM) and applicability of the both ROM models are suggested for
different properties of tencel mixes ring, rotor and MJS yarns. Finally, the major
conclusions arrived out of the above experimental work are presented.