CONTENTS

<table>
<thead>
<tr>
<th>Abstract</th>
<th>Page no.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>i</td>
</tr>
<tr>
<td>List of abbreviations</td>
<td>v</td>
</tr>
<tr>
<td>List of Figures</td>
<td>vi</td>
</tr>
<tr>
<td>List of Tables</td>
<td>x</td>
</tr>
</tbody>
</table>

1. **General introduction**
 1.1 Glycation, the non-enzymatic glycosylation.
 1.1.1 The overall chemistry of glycation. 1
 1.2 DNA glycation. 2
 1.2.1 Protection against DNA glycation 2
 1.2.2 DNA glycation adducts/ AGEs. 4
 1.2.3 Biological effects of glycation of DNA. 7
 1.2.4 Assay of AGEs. 9
 1.2.5 Role of Histone modification. 14
 1.3 Glycation and oxidative stress. 15
 1.4 Inhibitors of glycation. 17
 1.5 Significance of studies on DNA glycation and objectives of the present study. 18

2. **Experimental procedures**
 2.1 Materials 21
 2.2 Methods 22
 2.2.1 Continuous incubation of pBr 322 DNA with glucose and fructose. 22
 2.2.2 Interrupted incubation of pBr322 with ribose. 22
 2.2.3 Incubation of pBr322 DNA with BSA preincubated with the sugars. 22
 2.2.4 Restriction digestion of pBr322 subjected to continuous or interrupted incubation with the sugar. 23
 2.2.5 Effect of DETAPAC on the reaction of DNA with fructose and ribose. 23
 2.2.6 Competitive ELISA for the measurement of CEdGA,B formation in DNA samples. 23
 2.2.7 Interrupted and continuous incubation of herring sperm DNA with ribose. 25
 2.2.8 Characterisation and quantitation of nucleotide adducts using LC-MS/MS. 25
 2.2.9 Quantification of 8-oxodG, MGdG, CEdGA,B and GdG. 26
 2.2.10 *In vitro* incubations of 2'-dG with the sugars. 30
 2.2.11 *In vitro* incubations of 2'-dG with the sugars in presence of metal ion chelator (DETAPAC). 30
 2.2.12 Effect of the AGE inhibitor AG during *in vitro* incubations of 2'-dG with the sugars. 30
 2.2.13 Interrupted and continuous incubation of calf-thymus DNA with the sugars. 30
 2.2.14 Synthesis and purification of MGdG. 35
2.2.15 Synthesis and purification of CEdG_{A,B}. 36
2.2.16 1H and 13C NMR. 36
2.2.17 Extraction of DNA from cells in culture. 37
2.2.18 Enzymatic hydrolysis of DNA. 38
2.2.19 Assay of recovery of CEdG_{A,B}. 41
2.2.20 Study population and preparation of the biological samples for LC-MS/MS analysis. 41
2.2.21 Statistical analysis. 44
2.2.22 Cell lines and cell culture. 46
2.2.23 Isolation of peripheral mononuclear lymphocytes 47

3. **Chapter 1**

3.1 Introduction 51
3.2 Results 60
3.2.1 *In vitro* incubations of plasmid pBR322 with the sugars. 60
3.2.2 *In vitro* incubations of 2’-dG with the sugars. 71
3.2.3 Effect of AG on *in vitro* incubation of 2’-dG with the sugars. 80
3.2.4 Effect of the metal ion chelator- DETAPAC on *in vitro* incubations of 2’-dG with the reducing sugars. 87
3.2.5 Effect of *in vitro* reaction of calf thymus DNA with glucose, fructose and ribose. 87
3.2.6 ELISA measurements to quantify CEdG_{A,B} formation during *in vitro* incubation of DNA with 400 mM ribose. 97
3.2.7 The effect of concentration of the reducing sugar on the generation of CEdG_{A,B}. 97

3.3 Discussion 104

4. **Chapter 2**

4.1 Introduction 126
4.2 Results 136
4.3 Discussion 158

5. **Chapter 3**

5.1 Introduction 169
5.2 Results 180
5.3 Discussion 199

6. **Bibliography** 207