Chapter 1

PRELIMINARIES

In this chapter, we collect some basic definitions, and theorems which are needed for the subsequent chapters. For graph theoretic terminology, we refer to Harary [6], and Balakrishnan [2]. For domination theory terminology we refer to Haynes [25].

Definition 1.1 A graph \(G \) consists of a finite nonempty set \(V \) of vertices together with a set \(E \), disjoint from \(V \), whose elements are unordered pairs of (not necessarily distinct) vertices of \(V \). Each element \(e = \{ u, v \} \) of \(E \) is called an edge of \(G \), and \(e \) is said to join \(u \) and \(v \). We write \(e = uv \) and say that \(u \) and \(v \) are the ends of \(e \) and are incident with \(e \). They are also called adjacent vertices; edges which are incident with a common vertex are called adjacent edges. The number of vertices of \(G \) is called the order of \(G \) and is denoted by \(p \) or \(n \). The number of edges of \(G \) is called the size of \(G \) and is denoted by \(q \) or \(m \).

Definition 1.2 An edge whose ends are identical is called a loop and edges having the same end vertices are called multiple edges. A graph which contains neither loops nor multiple edges is called simple graph. Unless otherwise stated, we consider only simple graphs.
Definition 1.3 A graph H is called a **subgraph** of a graph G if $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$. A **spanning subgraph** of G is a subgraph H with $V(H) = V(G)$. For any set S of vertices of G, the **induced subgraph** $<S>$ is the maximal subgraph of G with vertex set S. Thus two vertices of S are adjacent in $<S>$ if and only if they are adjacent in G. $<S>$ is also denoted by $G[S]$.

Definition 1.4 A **walk** of a graph G is an alternating sequence of vertices and edges $W = v_0 e_1 v_1 e_2 \ldots v_{k-1} e_k v_k$ such that e_i is incident with v_{i-1} and v_i for each $i = 1, 2, \ldots, k$. The number of edges in W is called the **length** of the walk. This walk joins v_0 and v_k, and is called a $v_0 - v_k$ walk. It is also denoted by $v_0 v_1 v_2 \ldots v_k$. If $v_0 = v_k$, W is called a **closed walk**; otherwise it is called **open walk**. If all the edges of W are distinct, it is called a **trail**. Further if all the vertices are distinct it is called a **path**. A closed path is called a **cycle**. A path of length n is denoted by P_n and a cycle of length n is denoted by C_n.

Definition 1.5 A graph G is **connected** if every pair of vertices are joined by a path. A maximal connected subgraph of G is called a **component** of G. Thus a disconnected graph has at least two components.

Definition 1.6 A graph is **acyclic or a forest** if it has no cycles. A **tree** is a connected acyclic graph. A forest in which every component is a path is
called a linear forest.

Definition 1.7 A rooted tree is called an **m-array** tree if every internal vertex has no more than m children. The tree is called a full m-array tree if every internal vertex has exactly m children. An m-ary tree with m = 2 is called a **binary tree**.

Definition 1.8 The removal of a vertex v from a graph G gives the subgraph G - \{v\} consisting of all vertices and edges of G except v and edges incident with v. Thus G - \{v\} is the maximal subgraph of G not containing v.

Definition 1.9 The removal of an edge e from G gives the spanning subgraph G - e containing all edges of G except e. Thus G - e is the maximal subgraph of G not containing e.

Definition 1.10 An edge e is said to be **subdivided** when it is deleted and replaced by a path of length two connecting its ends. The internal vertex of this path is a new vertex.

Definition 1.11 The **degree of a vertex** v in a graph G is the number of edges of G incident with v and is denoted by deg_G v or d(v). The minimum and maximum degrees of vertices of G are denoted by \(\delta \) and \(\Delta \) respectively. A vertex of degree 0 in G is called an **isolated vertex**; a vertex of degree 1 is called a **pendant vertex** or an **end vertex** of G.
vertex which is adjacent to a pendant vertex is called a support. A vertex of degree $n - 1$ is called a full vertex.

Definition 1.12 A graph G is regular of degree r if every vertex of G has degree r. Such graphs are called r-regular graphs. Any 3-regular graph is called a cubic graph.

Definition 1.13 A graph G_1 is isomorphic to a graph G_2 if there exists a bijection ϕ from $V(G_1)$ to $V(G_2)$ such that $uv \in E(G_1)$ if and only if $\phi(u)\phi(v) \in E(G_2)$. If G_1 is isomorphic to G_2, then we write $G_1 \cong G_2$.

Definition 1.14 The neighborhood of a vertex u in a graph G is the set of all vertices which are adjacent to u. It is denoted by $N(u)$. $N[u] = N(u) \cup \{x\}$ is called the closed neighborhood of u.

Definition 1.15 A vertex v of a graph G is called a cut-vertex of a graph G if the removal of v increases the number of components. An edge e of a graph G is called a cut edge or bridge if the removal of e increases the number of components. A block of a graph is a maximal connected, non-trivial subgraph without cut-vertices.

Definition 1.16 A simple graph in which every vertex is adjacent to all other vertices is called a complete graph. A complete graph on n vertices is denoted by K_n. A maximal complete subgraph of G is called a clique of G.

Definition 1.17 A bipartite graph is a graph whose vertex set $V(G)$ can be partitioned into two subsets V_1 and V_2 such that every edge of G has one end in V_1 and the other end in $V_2; (V_1, V_2)$ is called a bipartition of G. If further, every vertex of V_1 is joined to all the vertices of V_2, then G is called a complete bipartite graph. The complete bipartite graph with bipartition (V_1, V_2) such that $|V_1| = m$ and $|V_2| = n$ is denoted by $K_{m,n}$. $K_{1,n}$ is called a star.

Definition 1.18 Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be any two graphs. Then union of G_1 and G_2 is the graph $G = G_1 \cup G_2$ with vertex set $V = V_1 \cup V_2$ and edge set $E = E_1 \cup E_2$.

The join of G_1 and G_2 is the graph $G = G_1 \vee G_2$ with vertex set $V = V_1 \cup V_2$ and edge set $E = E_1 \cup E_2 \cup \{ uv: u \in V_1, v \in V_2 \}$

The graph $K_1 \vee C_{p-1}$ ($p \geq 2$) is called a wheel and is denoted by W_p.

Definiton 1.19 The connectivity $\kappa = \kappa(G)$ of a graph G is the minimum number of vertices whose removal results in a disconnected graph.

Definition 1.20 A set of vertices in G is said to be independent if no two of them are adjacent. The number of vertices in a largest independent set of G is called the independence number of G and is denoted by β_0.

Definition 1.21 A vertex and an edge are said to cover each other if they are incident. A set of vertices which cover all the edges of a graph G is
called a **vertex cover** of G. The number of vertices in a smallest vertex cover is called the **vertex covering number** and is denoted by α_0.

Definition 1.22 A subset M of E is called a **matching** (edge independent set) in G, if no two edges of M are adjacent in G. A matching that contains all the vertices of G is called a **perfect matching**. The number of edges in a maximum edge independent set is called the **edge independence number** of G and is denoted by β_1.

Definition 1.23 The **chromatic number** of a graph is the assignment of colours to its vertices such that no two adjacent vertices receive the same colour and is denoted by χ. If $\chi(G) = k$, then G is k-chromatic. If $\chi(G) = k$, but $\chi(H) < k$ for every proper subgraph H of G, then G is **k-critical**.

Theorem 1.24 \cite{6} For any graph G, $\chi(G) \leq \Delta(G) + 1$.

Theorem 1.25 \cite{6} If G is neither a complete graph nor an odd cycle, then $\chi(G) \leq \Delta(G)$.

Theorem 1.26 If G is k-critical graph, then $\delta(G) \geq k - 1$

Notation For any real number x, $\lfloor x \rfloor$ denotes the largest integer less than or equal to x and $\lceil x \rceil$ denotes the smallest integer greater than or equal to x.

Definition 1.27 A set $S \subseteq V$ is said to be a **dominating set** in G if every vertex in $V - S$ is adjacent to some vertex in S. A dominating set S in G is a
minimal dominating set if no proper subset \(S_1 \subset S \) is a dominating set. The minimum cardinality taken over all minimal dominating sets is called the domination number of \(G \) and is denoted by \(\gamma \).

Theorem 1.28 [25] If \(G \) is a graph of order \(p \), with maximum degree \(\Delta \), then \(\gamma \geq \lceil p / (\Delta + 1) \rceil \).

Theorem 1.29 [16] For a connected graph \(G \), \(\gamma = \chi = 2 \) if and only if

(i) \(G \) is bipartite with bipartition \((X,Y)\) and

(ii) \(|X| = 2 \), or there exists \(x \) in \(X \) and \(y \) in \(Y \) such that \(N(x) = Y \) and \(N(y) = X \), or there exists \(x \) in \(X \) and \(y \) in \(Y \) such that \(N(x) = Y - \{y\} \) and \(N(y) = X - \{x\} \).

Definition 1.30 A dominating set \(S \) is called a **total dominating set** if the induced subgraph \(<S>\) has no isolated vertices. The minimum cardinality taken over all total dominating sets in \(G \) is called the total domination number of \(G \) and is denoted by \(\gamma_t \).

Definition 1.31 A dominating set \(S \) is called a **connected dominating set** if the induced subgraph \(<S>\) is connected. The minimum cardinality taken over all connected dominating sets in \(G \) is called the connected domination number of \(G \) and is denoted by \(\gamma_c \).

Definition 1.32 A dominating set \(S \) of a graph is called an **independent dominating set** of \(G \) if \(S \) is independent in \(G \). The cardinality of the
smallest independent dominating set of G is called the independent domination number of G and is denoted by $\text{i}(G)$.

Definition 1.33 A dominating set S is called an **efficient dominating** set if for every vertex $u \in V$, $|N(u) \cap S| = 1$.

Some special graphs.

Definition 1.34 The n-bistar $B_{n,n}$ is the graph with $V(B_{n,n}) = \{u, v, u_1, u_2, u_3, \ldots, u_n; v_1, v_2, v_3, \ldots, v_n\}$ and $E(B_{n,n}) = \{uu_i, vv_i, uv: 1 \leq i \leq n\}$. The graph $B_{4,4}$ is shown in the figure 1.1.

![Figure 1.1](image)

Definition 1.35 $H_{n,n}$ is the graph with vertex set $V(H_{n,n}) = \{v_1, v_2, v_3, \ldots, v_n; u_1, u_2, u_3, \ldots, u_n\}$ and the edge set $E(H_{n,n}) = \{v_iu_j: 1 \leq i \leq n, n - i + 1 \leq j \leq n\}$. The graph $H_{4,4}$ is shown in the figure 1.2.

![Figure 1.2](image)
Definition 1.36 The graph obtained from a wheel W_p by attaching a pendant edge at each vertex of the $(p-1)$-cycle is called a Helm and is denoted by H_p. For example the graph H_5 is shown in figure 1.3.
Definition 1.37 The corona of two graphs G_1 and G_2, is the graph $G = G_1 \circ G_2$ formed from one copy of G_1 and $|V(G_1)|$ copies of G_2 where the i^{th} vertex of G_1 is adjacent to every vertex in the i^{th} copy of G_2. For example if $G_1 = K_3$ and $G_2 = P_3$, then the corona $G_1 \circ G_2$ is shown in figure 1.4

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure1.png}
\caption{Figure 1.4}
\end{figure}