LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure No</th>
<th>Title</th>
<th>Page. No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.</td>
<td>Important aspects for the use of electroanalytical techniques</td>
<td>4</td>
</tr>
<tr>
<td>1.2.</td>
<td>Classification of Electroanalytical Techniques</td>
<td>5</td>
</tr>
<tr>
<td>2.1</td>
<td>Photograph of Electrochemical Workstation</td>
<td>72</td>
</tr>
<tr>
<td>2.2</td>
<td>Schematic illustration for formation of tin nanorods.</td>
<td>75</td>
</tr>
<tr>
<td>3.1</td>
<td>XRD pattern of tin deposited AAO template.</td>
<td>87</td>
</tr>
<tr>
<td>3.2</td>
<td>AFM image of AAO template (a) tin deposited AAO template (b) and tin nanorods (c).</td>
<td>88</td>
</tr>
<tr>
<td>3.3</td>
<td>EDS pattern of SnNR/AAO/Al.</td>
<td>90</td>
</tr>
<tr>
<td>3.4</td>
<td>Cyclic voltammograms of bare Al (curve a) AAO/Al (curve b) and SnNR/AAO/Al (curve c) in 0.25 M phosphate buffer solution.</td>
<td>91</td>
</tr>
<tr>
<td>3.5</td>
<td>Nyquist diagrams of bare aluminium (curve a), AAO/Al (curve b), and SnNR/AAO/Al (curve c) recorded in 5.0 mM [Fe(CN)₆]³⁻/⁴⁻ containing 0.1 M KCl</td>
<td>92</td>
</tr>
<tr>
<td>3.6</td>
<td>Cyclic voltammetry of bare AAO/Al (curve a) and SnNR/AAO/Al (curve b) electrodes in absence of ONB and bare AAO/Al (curve c) and SnNR/AAO/Al (curve d) electrodes in presence of 0.1 mM ONB in 0.25 M phosphate buffer (pH = 5.0), scan rate = 100 mV/sec.</td>
<td>93</td>
</tr>
<tr>
<td>3.7</td>
<td>Effect of pH for on the current response and potential of 0.1 mM ONB (Scan rate = 100 mV/sec).</td>
<td>95</td>
</tr>
<tr>
<td>3.8</td>
<td>Cyclic voltammograms of SnNR/AAO/Al in phosphate buffer solution (pH 5.0) at various scan rates (10 to 100 mV/sec).</td>
<td>96</td>
</tr>
<tr>
<td>3.9</td>
<td>Variation of peak currents vs. scan rate (a) and variation of peak potentials vs. logarithm (b) of the scan rate (from 10 to 900 mV/sec).</td>
<td>98</td>
</tr>
</tbody>
</table>
3.10 Differential pulse voltammograms recorded at SnNR/AAO/Al in 0.25 M phosphate buffer of pH 5.0 containing 0.5-100 μM of ONB.

3.11 Calibration curves for the reduction process of ONB.

4.1. (a, b) Different magnifications of SEM image of CoOxNS/Al

4.2. XRD pattern image of CoOx nanoflower

4.3. Nyquist diagrams of (a) Bare aluminium, (b) CoOxNS/Al recorded in 5.0 mM [Fe(CN)₆]³⁻/⁴⁻ containing 0.1 M KCl

4.4. Cyclic voltammograms of modified electrode (a) in the absence and (b) in the presence of 0.5 μM guanine in 0.25 M phosphate buffer solution. (c) Cyclic voltammogram of 0.5 μM guanine at the surface of the bare electrode in 0.25 M phosphate buffer solution.

4.5. Cyclic voltammograms of modified electrode (a) in the absence and (b) in the presence of 25 μM ss-DNA (B) in 0.25 M phosphate buffer solution. (c) Cyclic voltammogram of 25 μM ss-DNA guanine at the surface of the bare electrode in 0.25 M phosphate buffer solution.

4.6. Effect of pH on peak current of the CoOxNS/Al electrode in various pH of buffer solution containing 0.5 μM guanine

4.7. Effect of pH on peak potential of the CoOxNS/Al electrode in various pH buffer solution containing 0.5 μM guanine.

4.8. Effect of electrodeposition time on CoOxNS/Al on peak current in the presence of 0.5 μM guanine.

4.9. Effect of accumulation time of CoOxNS/Al on peak current in the presence of 0.5 μM guanine.

4.10. Cyclic voltammograms of the CoOxNS/Al electrode in buffer solution (pH 6) containing 0.5 μM guanine at scan rates of 10-100 mV s⁻¹.
4.11. (a) Plot of anodic peak potential (Ip) vs log v and (b) Plot of anodic peak current vs square root of scan rate

4.12. Electrocatalytic oxidation of guanine in ss-DNA at cobalt nanoflower modified aluminium electrode

4.13. DPV for the determination of 0.6 μM guanine in 0.25 M PBS (pH 7) at CoOxNS/Al in the presence of 1 mM AA (● curve), 0.1 mM UA (♦ curve), 10μM DP (▲ curve) and the mixture of adenine, thymine and cytosine interferences (solid line).

4.14. DPV of various concentrations of free guanine over the range of 50 nM-10 μM

4.15. Calibration curve obtained from the DPV voltammogram

4.16. DPV of various concentrations of guanine in ss-DNA over range of 5-65 μM in 0.1 M PBS

4.17. Calibration curve obtained from the above DPV voltammogram.

5.1. SEM image of bare Al electrode (a), and Fe₃O₄-Gnp/Al electrode (b)

5.2. XRD patterns of as-obtained Fe₃O₄-Gnp composite coating on aluminium electrode

5.3. The cyclic voltammograms of Fe₃O₄-Gnp/Al (a) in absence of 10 μM guanine, and Gnp/Al (b), Fe₃O₄-Gnp/Al (c) and Fe₃O₄-Gnp/Al (d) in presence of 10 μM guanine in 0.1 M PBS (pH = 7).

5.4. The cyclic voltammograms of Fe₃O₄-Gnp/Al (a) in absence of 10 μM adenine, Gnp/Al (b), Fe₃O₄-Gnp/Al (c) and Fe₃O₄-Gnp/Al (d) in presence of 10 μM adenine in 0.1 M PBS (pH = 7).

5.5. The cyclic voltammogram resulting from electrochemical oxidation of 10 μM guanine and 10 μM adenine in pH 7 of PBS (b) Gnp/Al (c) Fe₃O₄/Al (d) Fe₃O₄-Gnp/Al. (a) CV of Fe₃O₄-Gnp/Al electrode in the absence of 10 μM guanine in pH 7 of 0.1 M PBS solution.
5.6. Effect of concentration of graphite nanoparticles on peak current in the presence of guanine and adenine

5.7. Effect of pH on peak current and peak potentials at Fe₃O₄-Gnp/Al in presence of 10 µM Guanine

5.8. Effect of pH on peak current and peak potentials at Fe₃O₄-Gnp/Al in presence of 10 µM Adenine

5.9. Effect of accumulation time on peak current of adenine and guanine at Fe₃O₄-Gnp/Al electrode in 0.1 M phosphate buffer solution

5.10. (a) Cyclic voltammograms of the Fe₃O₄-Gnp/Al electrode in buffer solution (pH 7) containing 1 µM guanine at scan rates of 10-100 mVs⁻¹. (b) Plot of peak current vs. square root of scan rate. (c) Plot of peak potential vs log v.

5.11. (a) Cyclic voltammograms of the Fe₃O₄-Gnp/Al electrode in buffer solution (pH 7) containing 1 µM adenine at scan rates of 10-100 mVs⁻¹. (b) Plot of peak current vs. square root of scan rate. (c) Plot of peak potential vs log v.

5.12. (a) DPV of various concentrations of guanine (0.01-10 µM) in the presence of 1 µM adenine

5.13. Calibration plot for guanine obtained from above DPV voltammogram

5.14. DPV of various concentrations of adenine (0.01-10 µM) in the presence of 1 µM guanine

5.15. Calibration plot for guanine obtained from above DPV voltammogram

5.16. (a) DPV for the simultaneous determination of guanine and adenine in 0.1 M PBS at Fe₃O₄-Gnp/Al with guanine and adenine concentration (0.01 to 10 µM); (b) calibration graphs for guanine (0.01–10 µM) and adenine (0.05–6 µM).
5.17. (a) DPV for various concentrations of DNA (0.05-0.35 µg mL⁻¹) on Fe₃O₄-Gnps/Al in 0.1 M PBS (pH 7), (b) and (c) calibration graphs for guanine and adenine in DNA samples.

6.1. Effect of CoHCF thickness on peak current.

6.2. Cyclic Voltammograms of the CoHCF/Al electrode prepared by the electroless method, in 0.25 M phosphate buffer solution as supporting electrolyte at various potential scan rates: 10-100 mV/s⁻¹

6.3. Plot of anodic and cathodic peak currents of the second well-defined redox couple of CoHCF versus scan rate

6.4. Cyclic voltammograms of modified electrode (a) in the absence and (b) in the presence of 0.5 µM guanine in 0.25 M phosphate buffer solution.

6.5. Effect of accumulation time versus current for 1 µM of guanine on the surface of the CoHCF/Al in 0.1 M PBS of pH 7.

6.6. Cyclic voltammograms of 0.5 µM guanine in PBS pH = 4 obtained at different scan rates: 10-100 mV/s⁻¹.

6.7. Effect of scan rate on peak current in buffer solution containing 0.5 µM guanine at CoHCF/Al.

6.8. Effect of pH on peak current at CoHCF modified Aluminium electrode in 0.25 M PBS buffer solution.

6.9. Effect of pH on peak potential at CoHCF modified aluminium electrode in 0.25 M PBS buffer solution.

6.10. Differential pulse voltammograms of various concentrations of guanine over range of 10-110 µM guanine at the surface of a CoHCF modified aluminium electrode in 0.25 M PBS buffer solution

6.11. Calibration curve obtained from the DPV voltammogram.
6.12. Differential pulse voltammograms of various concentrations of ss-DNA guanine over range of 5-50 μM guanine at the surface of a CoHCF modified aluminium electrode in 0.25 M PBS buffer solution

6.13. Calibration curve obtained from the DPV voltammograms

7.1 SEM images of (a) bare Al (b) as deposited CuO/Al

7.2. XRD patterns of as-deposited CuO/Al

7.3. Electrochemical impedance plots of bare Al and CuO/Al in 0.1 M KCl containing 5 mM [Fe(CN)₆]³⁻/⁴⁻.

7.4. Cyclic voltammograms of bare Al (curve a) and CuO/Al (curve b) electrodes in absence of AA and bare Al (curve c) and CuO/Al (curve d) electrodes in presence of 5 mM AA in 0.25 M phosphate buffer (pH = 7.0), scan rate = 50 mV/sec.

7.5. CV of bare Al (curve a) and CuO/Al (curve b) electrodes in absence of DP and bare Al (curve c) and CuO/Al (curve d) electrodes in presence of 5 mM DP in 0.25 M phosphate buffer (pH = 7.0), scan rate = 50 mV/sec.

7.6. Cyclic voltammetry of CuO/Al and bare Al electrode in absence (curve a & b) and presence (curve b & d) of AA and DP in 0.25 M phosphate buffer (pH = 5.0), scan rate = 50 mV/sec.

7.7. Effect of pH on (a) peak current and (b) peak potentials of AA

7.8. Effect of pH on (a) peak current and (b) peak potentials of DP

7.9. Effect of accumulation time on peak current of AA and DP at CuO/Al electrode in 0.1 M phosphate buffer solution

7.10. Cyclic voltammograms of the CuO/Al electrode in buffer solution (pH 7) containing 5 mM AA at scan rates of 10-100 mVs⁻¹.

7.11. (a) Plot of peak potential vs scan rate (v). (b) Plot of peak current vs. square root of scan rate for 5 mM AA
7.12. Cyclic voltammograms of the CuO/Al electrode in buffer solution (pH 7) containing 5 mM DP at scan rates of 10-100 mVs⁻¹.

7.13. (a) Plot of peak current vs scan rate (v). (b) Plot of peak current vs. square root of scan rate for 5 mM DP.

7.14. (a) DPV of various concentrations of ascorbic acid (5-45 µM) in the presence of 10 µM dopamine, and (b) calibration plot for AA.

7.15. (a) DPV of various concentrations of dopamine (5-55 µM) in the presence of 10 µM ascorbic acid, and (b) calibration plot for dopamine.

7.16. (a) DPV for the simultaneous determination of AA and DP in 0.1 M PBS at CuO/Al with ascorbic acid and dopamine concentration (5 to 55 µM); (b) calibration graphs for AA and DP.
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table No</th>
<th>Title</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1.</td>
<td>EDS results for elemental composition of SnNR/AAO/Al.</td>
<td>89</td>
</tr>
<tr>
<td>3.2.</td>
<td>Influence of interfering ions on the determination of ONB</td>
<td>102</td>
</tr>
<tr>
<td>4.1.</td>
<td>Analytical factors of different modified electrodes for guanine detection</td>
<td>128</td>
</tr>
<tr>
<td>6.1.</td>
<td>Analytical parameters of different modified electrodes for guanine detection</td>
<td>186</td>
</tr>
<tr>
<td>7.1.</td>
<td>The analytical performances of different modified electrodes for the simultaneous determination of AA and DP.</td>
<td>213</td>
</tr>
</tbody>
</table>