CONTENTS

<table>
<thead>
<tr>
<th>No.</th>
<th>CHAPTER</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Introduction</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>REVIEW OF THE LITERATURE PERTAINING TO THE PRESENT WORK</td>
<td>6</td>
</tr>
<tr>
<td>2.1</td>
<td>Introduction</td>
<td>7</td>
</tr>
<tr>
<td>2.2</td>
<td>Classification of Bulked Yarns</td>
<td>8</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Definitions</td>
<td>9</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Texturising methods</td>
<td>10</td>
</tr>
<tr>
<td>2.2.2.1</td>
<td>Air-jet Texturising</td>
<td>12</td>
</tr>
<tr>
<td>2.2.2.2</td>
<td>False-twist Texturising</td>
<td>16</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Production of Combined or Plied yarns</td>
<td>18</td>
</tr>
<tr>
<td>2.3</td>
<td>Mechanical Texturising: A novel concept</td>
<td>19</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Wray's Mechanical-Bulking Process</td>
<td>20</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Single-step Mechanical-Bulking process</td>
<td>21</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Mechanical Crimp Textured Yarn</td>
<td>22</td>
</tr>
<tr>
<td>2.4</td>
<td>Parameters Influencing Textured Yarn Quality</td>
<td>22</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Material Variables</td>
<td>23</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Machine Variables</td>
<td>28</td>
</tr>
<tr>
<td>2.4.2.1</td>
<td>Type of Pre-twist Technique</td>
<td>29</td>
</tr>
<tr>
<td>2.4.2.2</td>
<td>Type of False-twist Technique</td>
<td>29</td>
</tr>
<tr>
<td>2.4.2.3</td>
<td>Feed systems</td>
<td>38</td>
</tr>
<tr>
<td>2.4.2.4</td>
<td>Winding or Take-up Mechanisms</td>
<td>40</td>
</tr>
<tr>
<td>2.4.3</td>
<td>Processing variables</td>
<td>42</td>
</tr>
<tr>
<td>2.4.3.1</td>
<td>Pre-twist</td>
<td>43</td>
</tr>
<tr>
<td>2.4.3.2</td>
<td>False-twist</td>
<td>43</td>
</tr>
<tr>
<td>2.4.3.3</td>
<td>Percent Underfeed</td>
<td>45</td>
</tr>
<tr>
<td>2.4.3.4</td>
<td>Bulking zone length</td>
<td>46</td>
</tr>
<tr>
<td>2.4.3.5</td>
<td>Delivery speed</td>
<td>47</td>
</tr>
<tr>
<td>2.5</td>
<td>Structural Mechanics of Twisted yarns</td>
<td>48</td>
</tr>
<tr>
<td>2.5.1</td>
<td>Twist imparted to the yarn by false-twist mechanism</td>
<td>48</td>
</tr>
<tr>
<td>2.5.2</td>
<td>Optimum twist of Textured yarn</td>
<td>50</td>
</tr>
<tr>
<td>2.6</td>
<td>Methods of Analyzing Structure and Properties of Textured yarn</td>
<td>52</td>
</tr>
<tr>
<td>2.6.1</td>
<td>Methods of Analyzing Textured yarn structure</td>
<td>52</td>
</tr>
<tr>
<td>2.6.2</td>
<td>Methods of Measuring Instability of Textured yarn</td>
<td>53</td>
</tr>
<tr>
<td>2.6.2.1</td>
<td>Weight Hanging Methods</td>
<td>54</td>
</tr>
<tr>
<td>2.6.2.2</td>
<td>Extension Measurement under</td>
<td>56</td>
</tr>
</tbody>
</table>
Static Conditions

2.6.2.3 Methods Based on Thread Tensile Force during Stretching on a Running yarn

2.6.2.4 Permanent Extension as Instability in a Tensile test

2.6.2.5 Methods Based on Repeated Loading (% Decay Method)

2.6.3 Bulkiness of Textured Yarns

2.6.4 Degree of Crimpiness of Textured yarns

2.7 Performance of Textured Yarn during Fabric Formation

CHAPTER III EXPERIMENTAL WORK

3.0 Introduction

3.1 Methodology

3.1.1 Development / Fabrication of the Model Machine for Innovative Texturising

3.1.1.1 Pre-twisting zone

3.1.1.2 Feeding zone

3.1.1.3 False-twisting zone

3.1.1.4 Delivery and Winding zone

3.1.2 Experimental

3.1.2.1 Evaluation of Structure and Properties of Innovative Textured Yarn

3.1.2.2 Effect of Process variables on Structure and Properties of Mechanical Textured Yarn

3.1.2.3 Effect of Raw-material Characteristics on Structure and Properties of Mechanical Textured Yarn

3.1.2.4 Identifying the Performance of Knitted and Woven Fabric produced by using Newly Engineered Textured yarn

3.1.2.5 Study the Cost Effectiveness of the Mechanical Textured Yarn with respect to Commercial Texturising systems

3.2 Testing Methods

3.2.1 Denier and its Deviation

3.2.2 Uniformity Measure

3.2.3 Twist Measurement
EFFECT OF PROCESS-VARIABLES AND MATERIAL-VARIABLES ON STRUCTURE AND PROPERTIES OF INNOVATIVE TEXTURED YARN.

4.5 Effect of Process-Variables on Structure and Properties of Mechanical Crimp Textured Yarn

4.5.1 Effect of False-twist on the Performance of Textured Yarn
 4.5.1.1 Increase in Linear Density and Physical Bulk
 4.5.1.2 Percent Boiling water shrinkage
 4.5.1.3 Percent Instability
 4.5.1.4 Twist
 4.5.1.5 Mechanical properties
 4.5.1.6 Tensile Behaviour of Innovative Textured yarn

4.5.2 Effect of Pre-twist on the Performance of Textured yarn
 4.5.2.1 Increase in Linear density and Physical Bulk
 4.5.2.2 Percent Boiling water shrinkage
 4.5.2.3 Percent Instability
 4.5.2.4 Mechanical properties

4.6 Effect of Delivery Speed
 4.6.1 Increase in Linear density, Instability and Bulk
 4.6.2 Pre-twist
 4.6.3 Percent Boiling water shrinkage
 4.6.4 Mechanical properties

4.7 Effect of Bulking zone Length
 4.7.1 Increase in Linear density and Bulk
 4.7.2 Percent Instability
 4.7.3 Percent Boiling water shrinkage
 4.7.4 Mechanical Properties

4.8 Development of an Empirical Formula for Calculating Optimum False-twist Level
 4.8.1 Optimisation of False-twist at Constant Pre-twist
 4.8.2 Optimisation of False-twist at Variable Pre-twist

4.9 Mathematical Derivation of Empirical formula for Optimum False-twist K (tpm) for the Innovative Texturising process

4.10 Confirmation Trial: Effect of pre-twist Level at Optimum Process-variables
 4.10.1 Increase in Linear density and Bulk
4.10.2 Instability 222
4.10.3 Percent Boiling water shrinkage 223
4.10.4 Pre-twist 228
4.10.5 Mechanical properties 229
4.10.6 Effect of Post Heat-setting 232
 4.10.6.1 Linear density and Bulk of Post Heat-set Yam 232
 4.10.6.2 Instability and Mechanical properties of Post Heat-set Yam 233
 4.10.6.3 Percent Boiling water shrinkage of Post Heat-set Yam 233

4.11 Effect of Raw Material Characteristics on Structure and Properties of Mechanical Textured Yam
 4.11.1 Effect of Raw Material Characteristics 234
 4.11.1.1 Increase in Linear density and Bulk 237
 4.11.1.2 Percent Instability 242
 4.11.1.3 Percent Boiling water shrinkage 244
 4.11.1.4 Pre-twist 245
 4.11.1.5 Mechanical Properties 246
 4.11.2 Effect of Yarn Fineness 249
 4.11.2.1 Increase in Linear density and Bulk 251
 4.11.2.2 Percent Instability 252
 4.11.2.3 Pre-twist and Percent Boiling water shrinkage 253
 4.11.2.4 Mechanical Properties 254

PERFORMANCE EVALUATION OF NEWLY ENGINEERED TEXTURED YARN IN KNITTED AND WOVEN STRUCTURE

4.12 Introduction 257
 4.12.1 Constructional Properties 259
 4.12.1.1 Fabric sett and Fabric Width shrinkage 261
 4.12.1.2 Linear density of Constituent yarns 268
 4.12.1.3 Fabric Weight per Unit area and Fabric Thickness 269
 4.12.1.4 Physical Bulk 270
 4.12.2 Mechanical Properties 273
 4.12.2.1 Tensile Properties 273
 4.12.2.2 Tearing Strength 280
 4.12.2.3 Abrasion Resistance 283
 4.12.3 Comfort Properties 286
 4.12.3.1 Air-permeability 286
4.12.4 Low Mechanical Stress and Aesthetical Properties
 4.12.4.1 Stiffness and Drape 289
 4.12.4.2 Crease-recovery 291

4.13 Knitted Fabrics 292

COST EFFECTIVENESS STUDY OF MECHANICAL TEXTURED YARN WITH RESPECT TO COMMERCIAL TEXTURISING SYSTEMS

4.14 Cost Effectiveness of Mechanical Textured Yarn with respect to Commercial texturising Systems
 4.14.1 Important points considered for Evaluation 295
 4.14.2 Cost Evaluation of Innovative Textured Yarn (for single head Lab apparatus)
 4.14.2.1 Cost per unit weight for the Newly Engineered Product 296
 4.14.2.2 Machine Power cost per Kg. 297
 4.14.2.3 Raw Material Cost per Kg. 297
 4.14.2.4 Cost per Kg. 298

CHAPTER V CONCLUSION

5.0 Conclusion 301
 Recommendation for Future work 314

REFERENCES 316

APPENDIX-1 CERTIFICATES 323
APPENDIX-2 PICTORIAL-VIEWS OF TEXTURED YARN 329
APPENDIX-3 MAT LAB PROGRAMME 333