


Chopra, I.J., Sack, J. and Fischer, D.A. 1977. 3,3',5'-triiodothyronine (reverse T₃) and 3,3',5-iodothyronine (T₄) in foetal and adult sheep. Study of metabolic clearance rates, production rates, serum binding and thyroidal content relative to thyroxine. Endocrinology (Baltimore), 1086-1088.


Cruickshank, E.M. 1941. Studies on fat metabolism in the fowl. I. The composition of the egg fat and depot fat of the fowl as affected by the ingestion of large amounts of different fats. Nutrition Abstracts and Reviews, 10: 645-659.


Etches, R.J. and Cunningham, F.J. 1976. The interrelationship between progesterone and luteinizing hormone during the ovulation cycle of the hen (Gallus domesticus), Journal of Endocrinology, 71: 51-58.


*12th World Poultry Congress*. Sydney, pp. 124-129.

Hutchinson, J.D.C. and Taylor, W.W. 1957. Seasonal variation in the egg 
production of fowl: Effect of temperature and changes of day length. 
*Journal of Agricultural Sciences*, 49: 419-434.

taux d'androgene circulant sur la fonction thyroidienne du canard. 

Jallages, M. and Assenmacher, I. 1974. Thyroid-gonadal interactions in 
the male domestic duck in relationship with the sexual cycle. 

Johnson, A.L. and van Tienhover, A. 1983. Plasma corticosterone 
concentration relative to photoperiod, oviposition and ovulation in the 

Dexamethasone-induced alterations in glucose tolerance and, insulin, 
glucagon and adrenaline responses during the first month in White 

metabolism by exogenous dexamethasone and corticosterone in post- 


Wilson, S.C. and Cunningham, F.J. 1980. Effect of increasing day length and intermittent lighting schedules in domestic hen on plasma concentration of luteinizing hormone (LH) and the LH response to exogenous progesterone. *General and Comparative Endocrinology*, 41 : 546-553.

