CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgement</td>
<td>xi</td>
</tr>
<tr>
<td>Abstract</td>
<td>xiii</td>
</tr>
<tr>
<td>List of Figures</td>
<td>xiv</td>
</tr>
<tr>
<td>List of Tables</td>
<td>xxvi</td>
</tr>
<tr>
<td>List of Symbols</td>
<td>xxxii</td>
</tr>
</tbody>
</table>

1 Introduction

1.1 Introduction 1
1.2 State of the art 2
1.3 Scope of the work 3
1.4 Organization of the thesis 5

2 Literature Review

2.1 Introduction 6
2.2 Power quality issues – Definitions 6
2.3 Sources of power quality issues 8

2.3.1 Typical harmonic generating loads 10
2.3.1.1 Three phase diode bridge rectifier 10
2.3.1.2 Three phase thyristor converter 11
2.3.1.3 DC Motor drive 12
2.3.1.4 Induction Motor drive 13

2.3.2 Study of typical nonlinear loads 14
2.3.2.1 Rectifiers 14

2.3.2.1 Three phase diode bridge rectifier 14
2.3.2.2 Single phase voltage regulator using TRIAC-DIAC 16
2.3.2.3 Lighting Loads 16
2.3.2.4 Chopper fed DC drive 17
2.3.2.5 UPS 17
2.3.2.6 Unbalanced load 18
2.3.2.7 Variable frequency drive 18
2.3.2.8 Wind farms 19

2.4 Effects of harmonics on apparatus 19
2.5 Power quality standards 21
2.6 Harmonic modeling 22
2.7 Power quality improvement techniques 23
 2.7.1 Fixed Element Passive filters 23
 2.7.2 Active filters 26
 2.7.3 Hybrid filters 33
2.8 Control strategies 38
2.9 Analog and digital Controllers 40
2.10 Conclusion 41

3 Adaptive Shunt Passive Filter With ANN Controller
 3.1 Introduction 42
 3.2 Characteristics of passive filter with fixed elements 42
 3.3 Test system I – Three phase thyristor converter fed R-L load 44
 3.3.1 Without any filter – Simulation analysis 44
 3.3.2 Performance of the fixed element passive filter – Simulation analysis 46
 3.3.2.1 Selection of fixed element passive filter 46
 3.3.2.2 Performance with the insertion of fixed element passive filter – Simulation analysis 47
 3.3.3 Performance of the adaptive shunt passive filter 49
 3.3.3.1 Selection of elements of adaptive shunt passive filter 50
 3.3.3.2 Structure of ANN based adaptive shunt passive filter 51
 3.3.3.3 Development of ANN controller 53
 3.3.3.4 Performance with the adaptive shunt passive filter – Simulation analysis 55
 3.3.3.5 Comparative study of fixed element and adaptive shunt passive filters – Simulation analysis 57
3.4 Test system II – Three phase thyristor converter fed R load
 3.4.1 Without any filter – Simulation analysis
 3.4.2 Performance of fixed element shunt passive filter – Simulation analysis
 3.4.2.1 Selection of fixed element shunt passive filter
 3.4.2.2 Performance with the insertion of fixed element shunt passive filter – Simulation analysis
 3.4.2.3 Performance of fixed element shunt passive filter – Experimental verification
 3.4.2.3.1 Without Filter – Experimental results
 3.4.2.3.2 Performance with fixed element passive filter – Experimental results
 3.4.3 Performance of ANN controller based adaptive shunt passive filter
 3.4.3.1 Selection of elements of adaptive shunt passive filter
 3.4.3.2 Development of ANN controller
 3.4.3.3 Performance of adaptive shunt passive filter – Simulation analysis
 3.4.3.4 Performance of adaptive element passive filter – Experimental verification
 3.4.3.5 Comparative study of fixed element and adaptive shunt passive filters – Experimental results

3.5 Discussion

3.6 Conclusion

4 Analog Icosφ Controller Based Shunt Active Filter for Static and Dynamic Loads

4.1 Introduction

4.2 Control algorithms for shunt active filter
 4.2.1 Icosφ algorithm

4.3 Steady state harmonics - Simulation analysis
 4.3.1 Test system I – Three phase thyristor converter fed RL Load
 4.3.1.1 Without any filter – Simulation analysis
4.3.1.2 Performance of analog Icosφ controller based active filter – Simulation analysis

4.4 Steady state harmonic analysis – Experimental verification
4.4.1 Test system II – Three phase diode bridge rectifier fed resistive load
4.4.1.1 Hardware implementation of analog Icosφ controller for shunt active filter
4.4.1.2 Performance of analog Icosφ controller with shunt active filter - Experimental verification
4.4.2 Test system III – Three phase thyristor converter fed resistive load
4.4.2.1 Performance of analog Icosφ controller with shunt active filter - Experimental verification

4.5 Dynamic state harmonics - Simulation analysis
4.5.1 D.C. motor fed through three phase thyristor converter – Simulation analysis
4.5.1.1 Performance of analog Icosφ controller based shunt active filter – Simulation analysis
4.5.2 Three phase induction motor driven by thyristor phase controller
4.5.2.1 Performance of analog Icosφ controller based shunt active filter – Simulation analysis

4.6 Dynamic state harmonic analysis – Experimental verification
4.6.1 Test system IV - DC motor fed through three phase thyristor converter
4.6.2 Test system V – Three phase induction motor driven by thyristor phase controller

4.7 Discussion

4.8 Conclusion

5 ANN Controller Based Shunt Active Filter for Static and Dynamic Loads
5.1 Introduction
5.2 ANN Controller based shunt active filter
5.3 Steady state harmonics – Simulation analysis
5.3.1 Test system I - Three phase thyristor converter fed R-L load 106
5.3.2 Development of ANN Controller 106
5.3.3 Performance of ANN controller based active Filter – Simulation analysis 109

5.4 Steady state harmonic analysis – Experimental verification 116
5.4.1 Framing Artificial Neural Network 116
5.4.2 Development of ANN controller for shunt active Filter 116
5.4.3 Hardware implementation of ANN controller for shunt active filter 118

5.5 Dynamic state harmonics – Simulation analysis 121
5.5.1 DC motor fed through three phase thyristor converter 121
5.5.1.1 Performance of ANN controller for shunt active filter – Simulation analysis 121
5.5.2 Induction motor drive 123
5.5.2.1 Performance of ANN Controller for shunt active filter – Simulation analysis 123

5.6 Dynamic state harmonics – Experimental verification 125
5.6.1 DC motor fed through thyristor converter 125
5.6.2 Three phase induction motor driven by thyristor phase controller 126

5.7 Discussion 127

5.8 Conclusion 132

6 ANN Controller Based Adaptive Shunt Hybrid Filter for Static and Dynamic loads
6.1 Introduction 134
6.2 Structure of adaptive shunt hybrid filter 134
6.3 Estimated ratings of hybrid filter – General analysis 135
6.4 Steady state harmonics - Simulation analysis 137
6.4.1 Test system I - Three phase thyristor converter fed R – L load 137
6.4.2 Selection of components for adaptive shunt hybrid filter 137
6.4.3 Development of ANN controller for adaptive shunt hybrid filter 138
6.4.4 Performance of adaptive shunt hybrid filter – Simulation analysis 140
6.5 Steady state harmonic analysis – Experimental verification 147
 6.5.1 Test system III – Thyristor converter fed resistive load 147
 6.5.2 Selection of elements for adaptive shunt hybrid filter 147
 6.5.3 Development of ANN controller for adaptive shunt hybrid filter 148
 6.5.4 Hardware implementation of ANN controller for adaptive shunt hybrid filter 150

6.6 Dynamic state harmonics – Simulation analysis 152
 6.6.1 DC motor fed through three phase thyristor converter 153
 6.6.1.1 Performance of adaptive shunt hybrid filter – Simulation analysis 153
 6.6.2 Three phase induction motor driven by thyristor phase controller 155
 6.6.2.1 Performance of adaptive shunt hybrid filter – Simulation analysis 155

6.7 Dynamic state harmonic analysis – Experimental verification 156
 6.7.1 DC motor fed through thyristor converter 156
 6.7.2 Three phase induction motor driven by thyristor phase controller 157

6.8 Discussion 158
6.9 Conclusion 162

7 Conclusions and Suggestions for Future Work 168
 7.1 Scope for future research 168

References 169
Appendix 1 175
Appendix 2 178
Publications by the author based on the research work 181