Subject Index

CHAPTER I

INTRODUCTION

1. Status

1.1. Introduction

1.2. Summary of the experimental approach

A. Hareford and Sevan's experiments

B. Seliger's experiments

C. Gubernator's experiments

D. Agu, Burdett and Matsukawa's experiments

E. Patrick and Rupaal's experiment

F. Thontadyra and Umakantha's experiment

1.3. The statement of the problem

References

CHAPTER II

EXPERIMENTS ON PENETRATION OF POSITRON AND ELECTRONS

2. Experiments and data

2.1. Introduction

2.2. Experimental techniques

A. Introduction

B. Apparatus developments

C. Penetration of positrons

D. Search for annihilation material

E. Penetration of electrons
2.3. Experimental data on penetration of positrons and electrons 32
2.4. Analysis of data 35
 A. Solids 35
 B. Liquids 38
2.5. Effects of impurities on the absorption of positrons and electrons 45
References 49

CHAPTER III
COMPARISON OF EXPERIMENTAL AND THEORETICAL RANGES

3. Experimental and Theoretical ranges of electrons and positrons 51
3.1. Theoretical ranges for solids 51
 A. Theoretical e.s.d.a. ranges \(R^+, R^- \) 51
 B. Theoretical Multiple scattering ranges \(\bar{Z}_d, \bar{Z_d} \) 52
 C. Recent theoretical projected ranges \(R^+_p, R^-_p \) 54
 D. Comparison of \(R^+ / R^- \) with the theoretically calculated ranges for solids 66
3.2. Theoretical ranges for liquids 69
 A. Theoretical projected ranges \(R^+, R^- \) for liquids 69
 B. Comparison of experimental and theoretical ranges 71

CHAPTER IV
SCINTILLATION COUNTER STUDY

4. Evaluation of scintillation counters 76
4.1. Resolution and Line Shape in Scintillation Counters 76
4.1.1. Introduction 76
4.1.2. Resolution and the photomultiplier 76
(a) Apparatus 76
(b) Statistical models 79
(c) The shape of the ideal scintillation line 84

(a) Statistical factors in scintillators 88
(b) Transfer effects in an organic scintillator 91
(c) Transfer effects in sodium iodide 99

References 109

4. B. Resolution and Cathode Uniformity in Scintillation Counters

4. B. 1. Introduction 112
4. B. 2. Purpose and Method 113
4. B. 3. Results and Discussion 116
4. B. 4. Conclusions 121

References 122