The study of differentiable manifolds carrying certain structures defined by tensorial relations has lately attracted the attention of many mathematicians due to their own mathematical elegance as well as due to their applications in Physics. This type of study was initiated by A. Weil and Ehresmann in 1947 by defining Almost complex structures on differentiable manifolds. Later Gray (1959) and Sasaki (1960) extended this study by defining Almost contact structure and its specialized structures (viz. K-contact and Sasakian structures). I. Satô (1976) has defined Almost paracontact structures on a differentiable manifold and has studied some of its properties. S. I. Husain and A. Sharfuddin (1977) have studied specialized structures of Almost paracontact manifolds analogous to those of Almost contact manifolds (viz. Paracontact and Para-Sasakian structures).

The present thesis is mainly devoted to the study of Hypersurfaces of Almost paracontact manifolds and Almost paracontact manifolds as hypersurfaces of Riemannian manifolds of constant curvature. The thesis comprises five chapters. Chapter I is introductory and gives a brief resume of the theory of Almost paracontact manifolds and Almost product manifolds which are of relevance to our subsequent chapters.
Chapter II is devoted to the study of Hypersurfaces of Almost product manifolds. It is known that \([19]\) if \(M\) is an almost paracontact manifold, then \(M \times \mathbb{R}\) admits an Almost product structures. Therefore it was natural to expect that a hypersurface of Almost product manifold should possess an induced Almost paracontact structure. However it has been shown that this not true in general, instead the hypersurface admits a different type of structures. This structure named as \((\phi, \xi, \gamma, \lambda)\)-structure has also been studied in this chapter.

Chapter III begins with the definition of a most general structure called para-f-structure on a differentiable manifold of which Almost paracontact structure and Almost product structure are particular cases. The hypersurfaces of Almost paracontact manifold, specially those for which the characteristic vector field \(\xi\) is everywhere tangent or nowhere tangent have been studied and it has been shown that under both the circumstances the hypersurfaces admit para-f-structures, which reduces either to Almost product structures or Almost paracontact structure.

In Chapter IV, we have studied the isometric immersion of Para-Sasakian manifolds in Riemannian manifolds of constant curvature. It has been shown that when a para-sasakian manifold
is isometrically immersed in a Riemannian manifold of constant curvature \(c \neq -1 \), then it is necessarily of constant curvature \(-1\).

The last chapter defines and studies Pseudo Para-Sasakian manifolds. In this chapter, we have also studied the isometric immersions of Pseudo-Para-Sasakian manifolds in Euclidean spaces as well as in Pseudo Riemannian manifolds of constant curvature.

Each chapter of the thesis has been divided into articles. For convenience the Theorems, Lemmas, Corollaries and equations have been numbered by three entries, eg. \((2.3.4)\) would mean the fourth numbered equation of article third in Chapter II.

The thesis ends with a small Bibliography which by no means is exhaustive on the subject but contains only those references which are used in the body of the thesis.