List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2.1</td>
<td>Number of samples collected in different season and the type of the sample.</td>
</tr>
<tr>
<td>Table 2.2</td>
<td>Volume of water used for the Sr isotope study, no of sample, replicates and number of blank and Isotopic Dilution run for the concentration measurement.</td>
</tr>
<tr>
<td>Table 2.3</td>
<td>All the measured 87Sr/86Sr ratios of SRM 987 are given in the table with date and standard error. The average value of 87Sr/86Sr ratios and standard deviation is given.</td>
</tr>
<tr>
<td>Table 2.4</td>
<td>Blank values for the different measurement period and sample to blank ratio.</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>Major ions, Ba, Sr, Rb abundance and 87Sr/86Sr ratios with errors (1σ) determined on water sample of Kaveri, Palar, Ponnaiyar and Vellar rivers are listed below. Major ions are given in μmol/l and Total Dissolved Solids (TDS) are in mg/l. Sampling period and replicates for 87Sr/86Sr ratios measurements are also given for the respective samples. Note - * Sampling period, M – Monsoon, PM – Pre-monsoon, ** Error and b. d. – below diction limit.</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>Major ions (μmol/l), Sr abundance (pg/g) and 87Sr/86Sr ratios with errors (1σ) determined using TIMS on rain water samples and moisture sample are listed below. Date of sample collection and the calculated pH for rain water from the cation and anion given in the table except for PRW1 which was measured after collection. Note: n. m. – not measured.</td>
</tr>
<tr>
<td>Table 3.3</td>
<td>Major ions are arranged in descending order according to their average abundance in meq/l and mg/l. River name, sampling period, average TDS and range of TDS values are also listed here.</td>
</tr>
<tr>
<td>Table 3.4</td>
<td>Correlation of Major ions and TDS of the water sample collected during monsoon and pre-monsoon periods and also for open/bore well samples are given separately below.</td>
</tr>
<tr>
<td>Table 3.5</td>
<td>Abundance of major ions in rainwater (μmol/l) from three different locations of southern India.</td>
</tr>
<tr>
<td>Table 3.6</td>
<td>Major ions concentration in μmol/l after correcting for atmospheric input.</td>
</tr>
<tr>
<td>Table 3.7</td>
<td>The mean and range (in percentages) of major ion contribution from atmospheric and other sources given separately for monsoon and pre-monsoon water samples. The pre-monsoon samples that show excess values are listed in the last row with sample name and percentage (inside the parenthesis). M – Monsoon, PM – Pre-monsoon, n – Number of samples.</td>
</tr>
<tr>
<td>Table 3.8</td>
<td>Na and Sr normalized molar ratios of major ions for monsoon and pre-monsoon water samples of Kaveri, Palar and Ponnaiyar were listed with mean, range and number of sample.</td>
</tr>
<tr>
<td>Table 3.9</td>
<td>Na and Sr normalized elemental molar ratio of granite and granitic gneisses, granulites, meta volcanic rock, flood plain sediments and weathering profile found in the Kaveri drainage basin were listed with mean, range and number of sample.</td>
</tr>
<tr>
<td>Table 3.10</td>
<td>[Ca/Na]${Sol}$ and [Mg/Na]${Sol}$ ratio used by different researcher for the river basins studied by them.</td>
</tr>
</tbody>
</table>

Page |
---|---|
18 |
25 |
27 |
28 |
31 |
33 |
36 |
41 |
48 |
49 |
50 |
54 |
55 |
65 |
Table 3.11 [Ca/Na]_{Sol} and [Mg/Na]_{Sol} ratio calculated using equation 5 for different tributaries of Kaveri.

Table 3.12 Different parameters calculated or used in the inverse model were given separately for both monsoon and pre-monsoon samples.

Table 3.13 Fit of the regression line and fs calculated using Ca/Sr, Mg/Sr and Ca/Mg of Kaveri, Palar and Ponnaiyar river basin.

Table 3.14 The range of the silicate fraction of cation (ΣCat)_{S} in percentage, calculated using forward (FWD) and inverse (INV) mixing model.

Table 3.15 Weathering Index, RE values were calculated for all the samples using equation 15 (Mortatti and Probst, 2003). The mean and range of the RE values for the three rivers studied during monsoon and pre-monsoon periods are given.

Table 3.16 The average annual flow in million cubic meters (MCM), the annual sediment loads in Metric Tonnes (MT) and the percentage of total contribution by South West Monsoon (SW), North East Monsoon (NE) and non-monsoon (NM) at different hydrological observation sites of four river system for the specified periods are listed.

Table 3.17 Physical (Wph) and specific chemical (Wch) weathering rate, silicate (SWR) and carbonate (CWR) weathering rate, total flux of dissolved silica and strontium in the Kaveri and its tributary, Palar and Ponnaiyar river for monsoon, non-monsoon and annual period. Wph were calculated from average sediment load for the period of 1989 – 2002 (Hydrological year book 2007).

Table 3.18 The mean and range of the R value calculated using equation 22 for monsoon and pre-monsoon water samples of Kaveri, Palar and Ponnaiyar river.

Table 3.19 CO$_2$ consumption rate during chemical weathering, its flux during monsoon, non-monsoon and for annual, percentage of CO$_2$ consumed by silicate and carbonate weathering for Kaveri, Palar and Ponnaiyar river basin. Upper limit of consumed CO$_2$ considering the reaction only by carbonic acid and lower limit after subtracting the contribution of H$_2$SO$_4$ for chemical weathering.

Table 3.20 Annual fluxes of major ions and TDS from Kaveri, Amaravati, Bhavani, Palar, Ponnaiyar and Vellar rivers. $a = 10^{3}\text{mol/km}^2\text{/y}$, $b = 10^{9}\text{mol/y}$, $c = \text{tons/km}^2\text{/y}$ and $d = 10^{6}\text{tons/y}$.

Table 3.21 Comparison of silicate (SWR) and carbonate (CWR) weathering rate, CO$_2$ consumption rates of Kaveri, Palar, Ponnaiyar and Velar river, with major Indian river and selected river basins of the world. Here $a = \text{tons km}^2\text{/y}$, $b = \text{m/Ma}$, $c = 10^5 \text{mol km}^2\text{y}^{-1}$ and $d = 10^9 \text{mol y}^{-1}$.

Table 4.1 Sampling locations of calcretes, river name and mineralogical composition of calcretes are listed.

Table 4.2 Shows concentration of different elements in ppm (few are in %) and $^{87}\text{Sr}/^{86}\text{Sr}$ ratios with errors (1σ) determined on calcrete sample.

Table 4.3 Range and average Ca/Sr, Na/Sr (µg/g) and $^{87}\text{Sr}/^{86}\text{Sr}$ ratios reported for major rock types from the drainage basin of Kaveri, Palar and Ponnaiyar rivers.

Table 4.4 Using $^{87}\text{Sr}/^{86}\text{Sr}$ ratios vs. Na/Sr and Ca/Sr plot, contribution of different silicate rocks were estimated and compared.
Table 5.1 Typical beam current obtained from the MC-SNICS. (Gargari et. al. 2003)

Table 6.1 Five Be standard with different 10Be/9Be ratio were prepared after mixing SRM 4325 and SRM 3105a. Below calculated ratios are given in the table.

Table 6.2 Clay mineral abundances in percentage, smectite/Kaolinite ratio and depth ranges of the sediment core samples of Kaluveli lake are listed here.

Table 6.3 Dry density, susceptibility, NRM and calculated Koenigsberger Ratio for the sediment samples of Kaluveli lake.

Table 6.4 The concentration of various elements in the leached fractions of sediment samples given in ppm.

Table 6.5 The 87Sr/86Sr ratios of shells and calcrite collected from the different layer of the sediment core sample of kaluveli lake.

Table 6.6 The results of AMS measurements and calculated values for 9Be, 10Be, 10Be age and sedimentation rates.

Table 6.7 Measured 10Be/9Be ratio (spike + sample), calculated 10Be abundance and growth rate of the Mn-nodules are given here.

Table A I.1 River water samples collected during NE monsoon period of 2005 – 06 (November – December) from Kaveri, Palar, Ponnaiyar and Vellar rivers are listed along with name of the river, location, geographic position, distance from mouth in km, pH, Electrical Conductivity (EC) in µS/cm, Temperature (T) in ºC and Total Suspended Load (TSL) in mg/l.

Table A I.2 Samples collected during pre-monsoon period (May-June) 2006, from Kaveri river and its tributaries were listed, along with name of the river, location, geographic position, distance from mouth in km, pH, Electrical Conductivity (EC) in µS/cm and Temperature (T) in ºC. Tick mark indicates that the calcrite samples were also collected from that location.

Table A I.3 Samples collected during May-June of 2006 from different Bore hole/Open well of the Tamilnadu are listed, along with the location & nearest river, geographic position, Depth in meter, pH, Electrical Conductivity (EC) in µS/cm and Temperature (T) in ºC.

Table A II.1 The percentages of samples are showing under saturation or over saturation or near saturations are given for monsoon and pre-monsoon period. Here both main stream and tributaries samples are taken together. n - Total number of samples including tributary sample.

Table A II.2 Total activity of major anions and cations, ionic strength, saturation index of different calcium carbonate compound, barium and calcium sulfate and silica, concentration of H+, log of Si concentration, logarithmic value of activity of different major ions used for mineral equilibria diagrams, Log P_{CO2} are listed for all the river water samples.

Table A III.1 Conditioning of electric fields to the parallel plates.

Table A III.2 Calibration factor calculated between observed and actual magnetic fields.

Table A III.3 Change of α Particle count rate at SSBD due to change in Electric field.

Table A III.4 Variation of α Particle count rate at SSBD due to change in Magnetic field.

Table A III.5 α – Particle count rate with respect to both magnetic and electric fields

Table A III.6 Summery of the online testing of Wien filter.