List of Tables

Table 2.1: Comparison of theoretical and experimental values of various physical properties of LiH at zero pressure.

Table 2.2: Theoretically calculated single crystal elastic constants of B1 phase of LiH at various unit cell volume and corresponding hydrostatic pressures.

Table 2.3: The equilibrium X-point phonon frequencies and the corresponding Grüneisen parameters for that particular vibrational mode have been compared with the previous literature.

Table 3.1: Comparison of theoretical and experimental values of physical properties of MgO at ambient condition.

Table 4.1: The comparison of theoretically determined phase transition pressures with experimental data.

Table 4.2: Various physical quantities for B1 phase of LaN at zero pressure.

Table 5.1: The dynamic yield strength, spall strength and corresponding average strain rates measured in the present work. A comparison also made with data measured under quasi static loading conditions.

Table 5.2: Various parameters measured from nanoindentation experiments.

Table 5.3: Percentage fractional shift in d-spacing of various crystallographic planes measured from x-ray diffraction. Here d_0 and d_p are the d-spacing of various (hkl) planes of as received and shock retrieved Cu sample, respectively. $100 \times (d_p - d_0)/d_0$ is the percentage shift in d-spacing of shock treated Cu.