Chapter 4

The Generalized Pebbling Number of Some Graphs

4.1 Introduction

Consider a distribution of pebbles on the vertices of a graph G. A generalized pebbling step involves removing p pebbles from a vertex removing $(p - 1)$ pebbles from G, and moving the remaining pebble to an adjacent vertex. For any positive $p \geq 2$, is it possible to move a pebble to a root vertex r, if we can repeatedly apply generalized pebbling steps. It is answered in affirmative by Chung in [2].

The generalized pebbling number of a vertex v in a graph G is the smallest number $f_{gl}(v, G)$ with the property that from every placement of $f_{gl}(v, G)$ pebbles on G, it is possible to move a pebble to v by a sequence of pebbling moves where a pebbling move consists of removing p pebbles from a vertex and placing one pebble on an adjacent vertex. The generalized pebbling number of the graph G, denoted by $f_{gl}(G)$, is the maximum of $f_{gl}(v, G)$ over all vertices v in G.
In this Chapter, we determine the generalized pebbling number of some graphs and generalized t-pebbling number. The rest of the Chapter deals with the generalized p pebbling property and the generalized pebbling conjecture on products of some graphs G with the graphs H where H satisfies the generalized p pebbling property.

4.2 Computation of the generalized pebbling number

Theorem 4.2.1. For any graph G, $f_{gl}(G) \geq (p - 1)|V(G)| - (p - 2)$ where $p \geq 2$.

Proof. Let G be a connected graph on $|V(G)|$ vertices. Let r be a root vertex. Place zero pebbles on r and place $p - 1$ pebbles at every vertex of $G - \{r\}$. We cannot move a pebble to r. So, $f_{gl}(r, G) \geq (p - 1)|V(G)| - (p - 2)$.

Therefore $f_{gl}(G) \geq (p - 1)|V(G)| - (p - 2)$.

Theorem 4.2.2. For a complete graph K_n, $f_{gl}(K_n) = (p - 1)n - (p - 2)$ where $p \geq 2$.

Proof. For a complete graph K_n, by Theorem 4.2.1, $f_{gl}(K_n) \geq (p - 1)n - (p - 2)$. Let r be a root vertex in K_n. Let $(p - 1)n - (p - 2)$ pebbles be placed such that vertex r in K_n has no pebble. There exists at least one vertex u in K_n, $u \neq r$ such that u has at least p pebbles. Since $\deg(r) = n - 1$, r is adjacent to all other vertices, in particular to u. So, we can move a pebble from u to r. So, $f_{gl}(r, K_n) \leq (p - 1)n - (p - 2)$.

Therefore, \(f_{gl}(K_n) = (p - 1)n - (p - 2) \) since \(r \) is arbitrary.

Theorem 4.2.3. If \(G \) contains a cut vertex, then

\[
f_{gl}(G) \geq (p - 1)n + (p^2 - 3p + 3)
\]

where \(n = |V(G)| \) and \(p \geq 2 \).

Proof. Let \(u \) be a cut vertex of \(G \) and let \(C_1 \) and \(C_2 \) be two distinct components of \(G - \{u\} \).

Take a vertex \(r \) in \(C_1 \) and a vertex \(y \) in \(C_2 \) (\(r \) is our root vertex). Place \(p - 1 \) pebbles at each vertex of \(V(G) - \{u, y, r\} \) and place \(p^2 - 1 \) pebbles at \(y \). We cannot move a pebble to \(r \). So, \(f_{gl}(G) \geq (p - 1)n + (p^2 - 3p + 3) \).

Theorem 4.2.4. For a path of length \(n \), \(f_{gl}(P_n) = p^n \) where \(p \geq 2 \).

Proof. We prove the result by induction on \(n \). When \(n = 0 \), the result is true. When \(n = 1 \), let \((u, v) \) be a path. If \(p \) pebbles are given assume that both are placed at \(u \) (or \(v \)), then we can move a pebble to \(v \) (or \(u \)). If we place at least one pebble at \(u \) and the remaining at \(v \), then the question of moving does not arise. Hence the result is true for \(n = 1 \).

Now, let us assume that the result is true for all paths of length less than \(n \). Consider a path \(P_n = v_0, v_1, v_2, \ldots, v_n \). Suppose \(p^n \) pebbles are placed. Consider the case when no pebble is placed on \(v_n \). Consider the path \(P_{n-1} = v_0, v_1, v_2, \ldots, v_{n-1} \). All the \(p^n \) pebbles have been placed in \(P_{n-1} \). The \(p^n \) pebbles can be arbitrarily grouped into \(p \) disjoint groups of \(p^{n-1} \) pebbles. Then by induction we can move \(p \) pebbles to \(v_{n-1} \). Hence one pebble can be moved to \(v_n \). So, \(f_{gl}(v_n, P_n) \leq p^n \). By placing \(p^n - 1 \) pebbles at \(v_0 \), we cannot move a pebble to \(v_n \). So, \(f_{gl}(v_n, P_n) = p^n \). A similar argument shows that \(f_{gl}(v_0, P_n) = p^n \).
Now consider an internal vertex $v_k (0 < k < n)$. Suppose p^n pebbles are placed on vertices other than v_k. By removing v_k from the path, P_n is decomposed into two paths. Let $P_1 = v_0, v_1, v_2, \ldots, v_{k-1}$ and $P_2 = v_{k+1}, v_{k+2}, \ldots, v_n$.

At least one of P_1 or P_2 contains not less than $p^n - 1$ pebbles. Without loss of generality, assume that P_1 has not less than $p^n - 1$ pebbles. P_1 is of length at most $n - 2$. But it contains $p^n - 1$ pebbles, by splitting these $p^n - 1$ pebbles into p arbitrary disjoint sets of p^{n-2} pebbles each, we can bring p pebbles to v_{k-1}. So, $f_{gl}(v_k, P_n) \leq p^n$ for any internal vertex v_k. Hence $f_{gl}(P_n) = p^n$. □

Theorem 4.2.5. Let C_n denote a cycle with n vertices. Then,

$$f_{gl}(C_n) = \begin{cases}
 p^{n/2}, & \text{if } n \text{ is even} \\
 1 + 2\left(\frac{p^n}{p+1}\right)(\lfloor n/2 \rfloor - 1), & \text{if } n \text{ is odd.}
\end{cases}$$

Proof. Let $C_n = (v_0, v_1, v_2, \ldots, v_{n-1})$.

Case 1: n is even.

The edges of C_n can be partitioned into two disjoint paths say P_1 and P_2 each from v_0 to $v_{n/2}$. By placing $p^{n/2} - 1$ pebbles at $v_{n/2}$ which is the farthest vertex from v_0, we cannot move a pebble to v_0. So $f_{gl}(v_0, C_n) \geq p^{n/2}$. Let K be the number of pebbles placed at $v_{n/2}$. If $K = p^{n/2}$ then we can move a pebble to v_0.

Suppose $K < p^{n/2}$, we place $p^{n/2} - K$ pebbles on other vertices. If we place all pebbles in one path say P_1, then P_1 has $p^{n/2}$ pebbles. So, we can move a pebble to v_0 (Theorem 4.2.4). If we distribute $p^{n/2} - K$ pebbles at the internal vertices of both paths, we have to distribute at least $\lceil (p^{n/2} - K)/2 \rceil$ pebbles at the internal vertices of any one of paths, P_1 and P_2. Without loss of generality, assume that we distribute at least $\lceil (p^{n/2} - K)/2 \rceil$ pebbles at the internal vertices of the path.
Ch. 4: The Generalized Pebbling Number of Some Graphs

P_1. Placing one pebble at $v_{(n/2)} - i$ is equivalent to placing p^i pebbles at $v_{n/2}$. So, placing $\left\lfloor (p^{n/2} - K)/2 \right\rfloor$ pebbles in $v_1, v_2, \ldots, v_{(n/2)-1}$ is equivalent to placing at least $p^{n/2}$ pebbles at $v_{n/2}$. So, we can move a pebble to v_0. So, $f_{gl}(v_0, C_n) = p^{n/2}$.

Hence $f_{gl}(C_n) = p^{n/2}$ since v_0 is arbitrary.

Case 2: n is odd.

Take $K = 2\lceil(p/p + 1)(p^{[n/2]} - 1)\rceil$.

Suppose K pebbles are placed as follows: $K/2$ pebbles are placed at each of the vertices $v_{[n/2]}$ and $v_{[n/2]} + 1$. We can move $\lceil K/2p \rceil$ pebbles from either of the vertex to the other vertex. So, one of these two vertices has got $p^{[n/2]} - 1$ pebbles. But these two vertices are at a distance $[n/2]$ from v_0. Therefore a pebble cannot be moved to v_0. So, $f_{gl}(v_0, C_n) \geq 1 + K$. Let us prove that $f_{gl}(v_0, C_n) = 1 + K$.

Suppose that $K + 1$ pebbles are placed at the vertices of C_n. Consider the paths $P_1 = (v_0, v_1, v_2, \ldots, v_{[n/2]})$ and $P_2 = (v_{[n/2]} + 1, \ldots, v_{n-1}, v_0)$. In the positioning of $K + 1$ pebbles if P_1 or P_2 has at least $p^{[n/2]}$ pebbles then we are done. When both P_1 and P_2 have less than $p^{[n/2]}$ pebbles each, the special case is placing $K/2$ pebbles at either of the vertices $v_{[n/2]}$ and $v_{[n/2]} + 1$ and $(K/2) + 1$ at the other vertex. Now, we can move $\lceil K/2p \rceil$ pebbles from the vertex with $K/2$ pebbles to the vertex with $(K/2) + 1$ pebbles. After this move one of the vertices $v_{[n/2]}$ and $v_{[n/2]} + 1$ has $p^{[n/2]}$ pebbles. Since these two vertices are at a distance $[n/2]$ from v_0, a pebble can be moved to v_0.

In all other positioning, it is equivalent to placing at least $(K/2)$ pebbles at either of the vertices $v_{[n/2]}$ and $v_{[n/2]} + 1$ and at least $1 + (K/2)$ pebbles at the other vertex because placing one pebble at $v_{[n/2]} + 1$ is equivalent to placing p pebbles at $v_{[n/2]}$. So, one of the vertices $v_{[n/2]}$ and $v_{[n/2]} + 1$ has got at least $p^{[n/2]}$ pebbles. Hence, a pebble can be moved to vertex v_0.

So, \(f_{gl}(v_0, C_n) = 1 + K \).

Therefore, \(f_{gl}(C_n) = 1 + K \) since \(v_0 \) is arbitrary.

\[\]

Theorem 4.2.6. \(f_{gl}(K_1, n) = (p - 1)n + (p^2 - 2p + 2) \) if \(n > 1 \) and \(p \geq 2 \).

Proof. Let \(V(K_1, n) = V_1 \cup V_2 \) where \(V_1 = \{ r \} \) and \(V_2 = \{ s_1, s_2, \ldots, s_n \} \).

By Theorem 4.2.2, \(f_{gl}(r, K_1, n) = (p - 1)n + 1 \).

To find \(f_{gl}(s_1, K_1, n) \).

We place zero pebbles on \(r \) and \(s_1 \). Place \(p^2 - 1 \) pebbles at \(s_2 \) and \(p - 1 \) pebbles at each of the vertices \(s_3, s_4, \ldots, s_n \). We cannot move a pebble to \(s_1 \). So \(f_{gl}(s_1, K_1, n) \geq (p - 1)n + (p^2 - 2p + 2) \).

Claim: \(f_{gl}(s_1, K_1, n) = (p - 1)n + (p^2 - 2p + 2) \).

Case i: If \(r \) has only one pebble, the other \((p - 1)(n - 1 + p)\) pebbles are placed in the \(n - 1 \) vertices of \(V_2 - \{ s_1 \} \). So at least \((p - 1)\) of them will have at least \(p \) pebbles and hence \(p - 1 \) pebbles can be moved to \(r \). Now \(r \) has \(p \) pebbles and so one pebble can be moved to \(s_1 \).

Case ii: If \(r \) has \(K + 2 \) pebbles where \(K = 0, 1, 2, \ldots, (p - 3) \), the other \((p - 1)n + (p^2 - 2p - K) \) \((p \geq 3) \) pebbles are placed in the \(n - 1 \) vertices of \(V_2 - \{ s_1 \} \), at least \(p - K - 1 \) of them will have at least \(2p - 1 \) pebbles, and one of them will have at least \(3p - 5 \) pebbles, and hence \(p - K \) pebbles can be moved to \(r \). Now \(r \) has \(p + 2 \) pebbles and so one pebble can be moved to \(s_1 \). (By placing \((p - 1)n + (p^2 - 2p - K)\) pebbles onto the \(n - 1 \) vertices of \(V_2 - \{ s_1 \} \), one vertex has got \(3p - 5 \) pebbles, and \(K - 1 \) vertices have got \(2p - 4 \) pebbles, and \(p - K \) vertices have got \(2p - 3 \) pebbles, and \(n - p - 1 \) vertices have got \(p - 1 \) pebbles.)

Case iii: If \(r \) has \(p \) pebbles, then we are done.
Case iv: Let r have zero pebbles. If there is a vertex in $V_2 - \{s_1\}$ having p^2 pebbles then we are done. Otherwise, We claim that there are p vertices of $V_2 - \{s_1\}$ having at least p pebbles. This is because if $p - 1$ vertices has $2p - 1$ pebbles and all others have $p - 1$ pebbles, then the total count comes to only $(p - 1)n + (p^2 - 2p + 1)$ which contradicts the fact that we have placed $(p - 1)n + (p^2 - 2p + 2)$ pebbles. So p pebbles can be moved to r and then one to s_1. So $f_{gl}(s_1, K_{1,n}) = (p - 1)n + (p^2 - 2p + 2)$.

Therefore, $f_{gl}(K_{1,n}) = (p - 1)n + (p^2 - 2p + 2)$ since s_1 is arbitrary.

We have determined the generalized pebbling number of complete graph K_n, path P_n, Cycle C_n and $K_{1,n}$. We find the following definitions in [24].

Definition 4.2.7 (Path Partition of a Rooted Tree). Let T be a tree and v be a vertex of T. Let T_v be the rooted tree obtained from T by directing all edges towards v, which becomes the root. For a rooted tree U, we shall call a vertex v of U a leaf, if it is of indegree zero. We shall call v a parent of w, if there is a directed edge from w to v, and an ancestor of w, if there is a directed path from w to v. A path partition of a rooted tree U is a partition of the edges of U such that each set of edges in the partition forms a directed path. We call v, a vertex of level n, if the directed path from v to the root has n edges; the height of a tree is the maximum level of its vertices.

Definition 4.2.8 (Maximum Path Partition of a Rooted Tree). Path partitions of a rooted tree U with height h can be formed in the following way. First we consider the sub tree U' of U induced by all leaves of level h and their ancestors and construct a path partition P' of U' such that every path in P' touches a leaf. Then we
Ch. 4: The Generalized Pebbling Number of Some Graphs

let U'' be the subtree of U induced by all leaves of level h or $h-1$ and their ancestors and extend P' to a path partition P'' of U'' by adding paths, which touch the level $h-1$ leaves of U. We continue in this manner until we have a path partition P of all of U. A path partition constructed in this way is called maximum.

Definition 4.2.9 (Path size sequence). The path-size sequence of a path-partition (P_1, P_2, \ldots, P_n) is an n-tuple (a_1, a_2, \ldots, a_n), where a_j is the length of P_j (i.e., the number of edges in it). A pebbling sequence need not move pebbles along the edges of a cycle. In particular, it need not move in both directions on an edge. Thus in a tree, all moves should be towards the root.

Theorem 4.2.10. Let U be a rooted tree and let v be the root of U. If the path size sequence of some maximum path partitions for U is (a_1, a_2, \ldots, a_n).

Then $f_{gl}(v, U) = \sum_{i=1}^{n} p^{a_i} - n + 1$.

Proof. Let $P = (P_1, P_2, \ldots, P_n)$ be a maximum path partition for U, rooted at v, and let (a_1, a_2, \ldots, a_n) be the path-size sequence of the path-partition.

We give a distribution of $\sum_{i=1}^{n} p^{a_i} - 1$ pebbles, that cannot move a pebble to the root vertex v. If some path in P starts at a non leaf vertex, then another path ends there, and the two paths combine to produce a path partition majorizing P. Hence in P, each path begins at a leaf. For each of length a_i in P, we put $p^{a_i} - 1$ pebbles on the starting leaf. Now no pebble can reach the end of its path without help from another path. Since this holds for each, independently no path can acquire a pebble from another path. Hence on each path containing v, it is not possible for pebbles to reach v. So, $f_{gl}(v, U) \geq \sum_{i=1}^{n} p^{a_i} - n + 1$. Let us use induction on the
number of path partitions n to prove that $f_{gl}(v, U) \leq \sum_{i=1}^{n} p^{a_{i}} - n + 1$. When $n = 1$, by Theorem 4.2.4, $f_{gl}(v, U) = p^{a_{1}}$ where a_{1} denotes the number of edges in a path. Therefore $f_{gl}(v, U) = p^{a_{1}} - 1 + 1$. Assume the result is true for $n' < n$ by placing $p^{a_{1}} + p^{a_{2}} + \cdots + p^{a_{n'}} - n + 1$ pebbles on the tree U, we show that every distribution with more than $\sum_{i=1}^{n} p^{a_{i}} - n$ pebbles, a pebble can be moved to a root vertex v, using a weight function based on P. Let P_{i} be the path in P corresponding to length a_{i}.

Given a distribution D, let q_{ij} be the number of pebbles on P_{i} at a distance j from the leaf. Define weight of the distribution along P_{i} by $W_{i}(D) = \sum_{j=0}^{a_{i}-1} q_{ij} p^{j}$ where $p \geq 2$. Now we claim that there will be at least one P_{i} (with weight distribution $W_{i}(D)$) has at least $p^{a_{i}}$ pebbles. Otherwise, the total number of pebbles placed will be at most $\sum_{i=1}^{n} p^{a_{i}} - n$ which is a contradiction. So using $p^{a_{i}}$ pebbles, we can put a pebble at the end other than the starting leaf of the path P_{i}.

Case (i): Suppose $i = 1$. Here the end of the path P_{i} coincides with the root v, then there is nothing to prove.

Case (ii): suppose $i \neq 1$. We have the end of the path P_{i} is different from root v. By the given distribution D, remaining $(n-1)$ path partitions receive $p^{a_{1}} + p^{a_{2}} + \cdots + p^{a_{i}-1} + p^{a_{i}+1} + \cdots + p^{a_{n}} - (n-1)$ pebbles. With these, addition of one pebble yield $p^{a_{1}} + p^{a_{2}} + \cdots + p^{a_{i}-1} + p^{a_{i}+1} + \cdots + p^{a_{n}} - (n-1) + 1$ pebbles. By induction, we can move a pebble to a root v.

We define the generalized p-pebbling property as follows:

Definition 4.2.11. If $p^{n+1} - r + 1$ pebbles are assigned to vertices of an n-cube, while r vertices have at least one pebble, then p pebbles can be moved to v.
The following lemma describes the number of pebbles that we can transfer from one copy of H to an adjacent copy of H in $G \times H$. It is also called generalized transfer lemma.

Lemma 4.2.12 (Generalized transfer lemma). Let (x_i, x_j) be an edge in G. Suppose that in $G \times H$, we have a_i pebbles on $\{x_i\} \times H$ and b_i of these vertices have $mp + s$, where $1 \leq s \leq p - 1, m = 0, 1, 2, \ldots$ and $p \geq 2$ pebbles. If $b_i \leq k \leq a_i$ and if k and a_i have the same parity, then at most $(p - 1)k$ pebbles can be retained on $\{x_i\} \times H$, while moving at least $\frac{a_i - (p - 1)k}{p}$ pebbles onto $\{x_j\} \times H$. If k and a_i have opposite parity, we must leave at most $(p - 1)(k + 1)$ pebbles on $\{x_i\} \times H$, we can move at least $\frac{a_i - (p - 1)b_i}{p}$ pebbles onto $\{x_j\} \times H$.

Proof. For every p pebbles on a vertex in $\{x_i\} \times H$ we can move one pebble to its neighbour in $\{x_j\} \times H$. If we ignore at most $(p - 1)$ pebbles for each vertex with an $(mp + s)$ pebbles we can move $\frac{a_i - (p - 1)b_i}{p}$ pebbles to $\{x_j\} \times H$ from $\{x_i\} \times H$.

The following theorem gives the generalized pebbling number of an n-cube, and also it proves that n-cube satisfies the generalized p-pebbling property.

Theorem 4.2.13. In an n-cube with a specified vertex, the following are true:

1. If p^n pebbles are assigned to vertices of the n-cube, one pebble can be moved to v.

2. If $p^{n+1} - b + 1$ pebbles are assigned to vertices of an n-cube, while b vertices have at least one pebble, then p pebbles can be moved to v.
Ch. 4: The Generalized Pebbling Number of Some Graphs

Proof. If the vertices of K_2 are labeled as x_1, x_2 then for any distribution of pebbles on $K_2 \times Q_{n-1}$, we write a_i the number of pebbles on $\{x_i\} \times Q_{n-1}$ and b_i for the number of vertices having at least one pebble. The n-cube can be partitioned into two $(n-1)$ cubes, say, $\{x_1\} \times Q_{n-1}$ and $\{x_2\} \times Q_{n-1}$. Assume $v = (x_1, y) \in \{x_1\} \times Q_{n-1}$ for some y is our target vertex. Let $v' = (x_2, y) \in \{x_2\} \times Q_{n-1}$ be adjacent to v. Let a denote the total number of pebbles so that $a = a_1 + a_2$.

We will prove (1) by induction an n. For Q_0, we have one vertex. We need exactly one pebble for Q_0 to pebble the target vertex. Hence, $f_{gl}(Q_0) = 1 = p^0$. Suppose it is true for $n' < n$. Suppose there are $a \geq p^n$ pebbles are assigned to vertices of the n-cube, where $p \geq 2$. Let us place $p^n - 1$ pebbles at a vertex, which is at a distance n from the target vertex $v = (x_1, y)$. we cannot move a pebble to v. So $f_{gl}(v, Q_n) > p^n - 1 \geq p^n$.

Next we have to prove that $f_{gl}(v, Q_n) \leq p^n$. If $a_1 \geq p^n - 1$, then by induction in $\{x_1\} \times Q_{n-1}$, one pebble can be moved to v. Assume $a_1 < p^n - 1$. Consider the following two cases:

Case A: Assume $a_1 < b_2$. Consider $\{x_2\} \times Q_{n-1}$.

Since $a_2 = a - a_1 > p^n - p_2$, using (2) in Q_{n-1} (by induction) p pebbles can be moved to v' and hence one pebble can be moved to v.

Case B: Assume $b_2 \leq a_1$.

Here we would like to try to move as many pebbles as possible from $\{x_2\} \times Q_{n-1}$ to $\{x_1\} \times Q_{n-1}$ to try to get enough pebbles on $\{x_1\} \times Q_{n-1}$ to satisfy the inductive hypothesis, so that one pebble can be moved to v.
In \(\{x_1\} \times Q_{n-1} \), we have

\[
a_1 + a_2 - \frac{(p-1)b_2}{p} \geq a_1 + a_2 - (p-1)a_1
\]

By Lemma 4.2.12

\[
\geq \frac{a_1 + a_2}{p}
\]

\[
= \frac{a}{p}
\]

\[
\geq p^{n-1} \text{ pebbles}
\]

By induction, we can move one pebble to \(v \). The only distribution from which we cannot pebble the target satisfy the inequality

\[
a_1 + a_2 - \frac{(p-1)b_2}{p} < p^{n-1}
\]

(4.1)

\[
\frac{a_2 + b_2}{p} \leq p^{n-1}
\]

(4.2)

Multiplying (4.2) by \((p-1) \) we get

\[
(p-1) \left(\frac{a_2 + b_2}{p} \right) \leq (p-1)p^{n-1}
\]

(4.3)

Adding (4.1) and (4.3) we get \(a_1 + a_2 < p^n \), i.e., \(a < p^n \).

So in any distribution with less than \(p^n \) pebbles we cannot pebble any target.

(2). We will prove by induction on \(n \). Suppose we have \(p-b \) pebbles on \(Q_O \). Since \(b \leq 1 \), we have at least \(p \) pebbles on \(Q_O \) and we are done. Suppose it is true for \(n' < n \).

Assume \(v = (x_1, y) \in \{x_1\} \times Q_{n-1} \) for some \(y \) is our target vertex. Let \(v' = (x_2, y) \in \{x_2\} \times Q_{n-1} \) be adjacent to \(v \). Recall that a denote the total number of pebbles so that each \(\{x_i\} \times Q_{n-1} \) contains \(a_i \) pebbles for \(i = 1, 2 \) with \(b_i \) vertices having at least one pebble. Suppose \(a = a_1 + a_2 = p^{n+1} - b + 1 \) pebbles are assigned to vertices of the \(n \)-cube. We consider the following three possibilities:
Case (A) Suppose \(a_1 > p^n - b_1 \). By induction in \(\{x_1\} \times Q_{n-1} \), \(p \) pebbles can be moved to \(v \).

Case (B): \(p^{n-1} \leq a_1 < p^n - b_1 \). Since \(a_1 \geq p^{n-1} \) one pebble can be moved to \(v \) in \(\{x_1\} \times Q_{n-1} \).

Since \(a_2 = a - a_1 \)
\[
\geq a - (p^n - b_1) \text{ since } a_1 < p^n - b_1
\]
\[
> (p^{n+1} - b) - (p^n - b_1) \text{ by our hypothesis } a > p^{n+1} - b
\]
\[
= p^{n+1} - b_1 - b_2 - p^n + b_1
\]
\[
= (p - 1)p^n - b_2
\]

Therefore, we have \(a_2 > (p - 1)p^n - b_2 \) pebbles in \(\{x_2\} \times Q_{n-1} \) and by induction we can move \((p - 1)\) \(p \) pebbles to \(v' \) by applying generalized pebbling steps in \(\{x_2\} \times Q_{n-1} \).

Then we can move \((p - 1)\) pebbles from \(v' \) to \(v \). Combined with the pebble placed on \(v \) via moves within \(\{x_1\} \times Q_{n-1} \) we have \(p \) pebbles on \(v \) and we are done.

Case (C): \(a_1 < p^{n-1} \). In the final case we will show that we can move enough pebbles from \(\{x_2\} \times Q_{n-1} \) to \(\{x_1\} \times Q_{n-1} \) to move one pebble to \(v \) by applying pebbling moves within \(\{x_1\} \times Q_{n-1} \) and at the same time leave enough pebbles on \(\{x_2\} \times Q_{n-1} \), so that we can move \((p - 1)\) \(p \) pebbles to \(v' \) by applying pebbling moves within \(\{x_2\} \times Q_{n-1} \). By (1) we know that if we have \(p^{n-1} \) pebbles in \(\{x_1\} \times Q_{n-1} \), then we can move one pebble to \(v \). So we need to move \(p^{n-1} - a_1 \) pebbles from \(\{x_2\} \times Q_{n-1} \) to \(\{x_1\} \times Q_{n-1} \). This corresponds to removing \(p(p^{n-1} - a_1) \) pebbles from \(\{x_2\} \times Q_{n-1} \).
This leaves us with at least
\[a_2 - p(p^{n-1} - a_1) \]
pebbles left in \(\{x_2\} \times Q_{n-1} \) and
\[
\begin{align*}
 a_2 - p(p^{n-1} - a_1) &= a_2 + pa_1 - p^n \\
 &= a_2 + a_1 + (p - 1)a_1 - p^n \\
 &= a + (p - 1)a_1 - p^n \\
 > p^{n+1} - b + (p - 1)a_1 - p^n & \text{ by hypothesis } a > p^{n+1} - b \\
 &= p^{n+1} - b_1 - b_2 + (p - 1)a_1 - p^n \\
 &= (p - 1)p^n - b_1 - b_2 + (p - 1)a_1 \\
 \geq (p - 1)p^n - b_2 & \text{ since } a_1 \geq b_1.
\end{align*}
\]

Note that \(a_1 \geq b_1 \) because every vertex with \(mp + s \) pebbles corresponds to at least one pebble. Also we have more than \((p - 1)p^n - b_2 \) pebbles on \(\{x_2\} \times Q_{n-1} \), by induction we can move \((p - 1)p \) pebbles to \(v' \) by pebbling within \(\{x_2\} \times Q_{n-1} \) and then \((p - 1) \) pebbles to \(v \). At the same time, we can apply pebbling moves using the \(p^{n-1} \) pebbles in \(\{x_1\} \times Q_{n-1} \) and place one additional pebble on \(v \).

Definition 4.2.14. We define the wheel graph denoted by \(W_n \) to be the graph with
\[
V(W_n) = \{h, v_1, v_2, \ldots, v_n\}
\]
where \(h \) is called the hub of \(W_n \) and \(E(W_n) = E(C_n) \cup \{hv_1, hv_2, \ldots, hv_n\} \) where \(C_n \) denotes the cycle graph on \(n \) vertices.

Theorem 4.2.15. For \(n \geq 4 \), the generalized pebbling number of the wheel graph \(W_n \) is
\[
f_{gl}(W_n) = (p - 1)n + (p^2 - 2p + 1) \text{ where } p \geq 2.
\]

Proof. By Theorem 4.2.2, \(f_{gl}(h, W_n) = p + (p - 1)(n - 1) \). Let us now find the generalized pebbling number of \(v_1 \). If we place \(p - 2 \) pebbles at \(v_n \), \((p^2 - 1) \) pebbles at \(v_{[n/2]} \) and \((p - 1) \) pebbles at \(W_n - \{v_1, v_n, v_{[n/2]}\} \) then we cannot move
a pebble to \(v_1 \).

So \(f_{gl}(v_1, w_n) > (p^2 - 1) + (p - 1)(n - 3) + (p - 2) \)

\[\geq (p - 1)n + (p^2 - 2p + 1) \]

Let us now prove that \((p - 1)n + (p^2 - 2p + 1)\) pebbles are sufficient to put a pebble on \(v_1 \). Assume that \(v_1 \) has zero pebbles. Now \(v_1 \) is adjacent with \(h, v_2, v_n \). Hence in the given distribution, any one of \(h, v_2, v_n \) receives \(p \) pebbles, then a pebble can be moved to \(v_1 \). Also any one of the vertices \(\{v_3, v_4, \ldots, v_{n-1}\} \) receives at least \(p^2 \) pebbles then a pebble can be moved to \(v_1 \) through \(h \). Let \(q_i = pm_i + r_i \) where \(0 \leq r_i \leq p - 1 \) be the number of pebbles on \(v_i \) for \(i = 2 \) to \(n \). Let \(a \) be the number of pebbles on \(h \). Suppose \(a \geq p \), then from \(h \), we can move a pebble to \(v_1 \). Suppose \(a < p \), then let \(b = p - a > 0 \). Let us transfer the pebbles from \(v_i \) \((i = 2 \) to \(n)\) to \(h \).

Let \(m = \sum_{i=2}^{n} m_i \). After this transfer, number of pebbles on \(h \) is \(b + m \). If \(b + m \geq p \), then we can put a pebble on \(v_1 \). So we assume that \(b + m < p \). Therefore \(p - b - m > 0 \). Let \(s = p - b - m \). In order to place \(p - b - m \) pebbles on \(h \) we are in need of \(p(p - b - m) \) pebbles on \(C_n \).

Consider

\[(p - 1)n + (p^2 - 2p + 1) - b - pm - p^2 + pb + pm = (p - 1)n + b(p - 1) + (1 - 2p). \]

Since \(p \geq 2, n \geq 4, b > 0 \) we get \((p - 1)n + b(p - 1) + (1 - 2p) \geq 2\).

From \(h \), a pebble can be moved to \(v_1 \). If \(h \) has zero pebbles, \(v_2 \) and \(v_n \) have at most \((p - 2)\) pebbles each and no vertex of \(\{v_3, v_4, \ldots, v_{n-1}\} \) has \(p^2 \) pebbles and assume \(n - 3 \geq p \), then there will be at least \(p \) pebbles each, then we can move \(p \) pebbles to \(h \) and so we are done.
Let us assume $n - 3 < p$. Consider

$$(p - 1)n + (p^2 - 2p + 2) - 2(p - 2) = (p - 1)n + (p^2 - 4p + 6).$$

Now, $p^2 + (n - 4)p - (n - 6)$ pebbles are distributed onto C_n. Using p^2 pebbles we can move a pebble to v_1.

Theorem 4.2.16. The generalized pebbling number of the fan graph F_n is

$$f_{gl}(F_n) = (p - 1)n + (p^2 - 2p + 1).$$

Proof. Fan graph F_n is the spanning sub graph of W_n, so $f_{gl}(F_n) \leq f_{gl}(W_n)$.

Hence $f_{gl}(F_n) \leq (p - 1)n + (p^2 - 2p + 1)$.

Suppose that, there are $(p - 1)n + (p^2 - 2p + 1)$ pebbles distributed on the vertices of F_n where F_n is the fan graph with vertices $v_1, v_2, \ldots, v_n, v_{n+1}$ in order. First, let the target vertex be v_{n+1}. By Theorem 4.2.2 $f_{gl}(v_{n+1}, F_n) = p + (p - 1)(n - 1)$, if v_{n+1} has zero pebbles then there exists some v_i where $i \in \{1, 2, 3, \ldots, n\}$ with at least p pebbles, so we can move one pebble to v_{n+1} from v_i.

Next supposing the target vertex is v_k and assume that v_k has zero pebbles where $k \in \{1, 2, 3, \ldots, n\}$. Suppose v_{n+1} receives at least p pebbles, then a pebble can be moved to v_k or if any one of the vertices of v_i where $i \in \{1, 2, \ldots, n\}$ and $i \neq k$ receives p^2 pebbles then from v_i a pebble can be moved to v_k through v_{n+1}.

Suppose v_{n+1} receives m where $1 \leq m \leq p - 1$ pebbles and the vertices of $P_n - \{v_k\}$ receive at the most $p^2 - 1$ pebbles, using $p(p - 2)$ pebbles, we can move $(p - 2)$ pebbles to v_{n+1}, and the remaining $(p - 1)n$ pebbles are also distributed onto the vertices of P_n. Hence there exists a vertex w with at least p pebbles, so a pebble can be moved to v_{n+1} from w. Now v_{n+1} receives at least p pebbles, so
a pebble can be moved to \(v_k\) from \(v_{n+1}\). Suppose \(v_{n+1}\) has zero pebbles and all the vertices of \(P_n\) except \(v_k\) receive at the most \(p^2 - 1\) pebbles, then there must be at least one vertex \(v_j\) with at least \(p\) pebbles. If in addition, there are at least two vertices \(v_j\) and \(v_{\ell}\) with \(m\) pebbles in which \(p \leq m \leq p^2 - 1\), then we can move at least \(\lfloor p/2 \rfloor\) pebbles from \(v_{\ell}\) to \(v_{n+1}\). So, \(p\) pebbles can be moved to \(v_{n+1}\). Hence a pebble can be moved to \(v_k\). Otherwise, there is only one vertex \(v_j\) with at least \(p\) pebbles. Therefore all \(v_i\) in which \(1 \leq i \leq n\) and \(i \neq j, k\) have \((p - 1)\) pebbles. Suppose \(j < k\), then using the sequence of pebbling moves \(v_j - v_{j+1} - v_{j+2} - \cdots - v_k\) we can move a pebble to \(v_k\), otherwise using the sequence of moves \(v_j - v_{j-1} - \cdots - v_k\), a pebble can be moved to \(v_k\). Hence in all the cases \(f_{gl}(v_k, F_n) \leq (p - 1)n + (p^2 - 2p + 1)\).

Theorem 4.2.17. For \(G = K_{s_1, s_2, \ldots, s_r}^*\) the generalized pebbling number is given by

\[
f_{gl}(G) = \begin{cases}
p^2 + (p - 1)(s_1 - 2), & \text{if } p \geq n - s_1 \\
p + (p - 1)(n - 2), & \text{if } p < n - s_1.\end{cases}
\]

Proof. **Case 1:** Assume \(s_1 < n - p\).

Let the target vertex be \(v\) of \(C_i\) for some \(i = 1, 2, \ldots, r\). Without loss of generality, we assume that \(v\) has zero pebbles on it. If we place \((p - 1)\) pebbles each on \((n - 1)\) vertices of \(G\) other than \(v\), a pebble cannot be moved to \(v\).

So \(f_{gl}(v, G) \geq p + (p - 1)(n - 2)\).

Let us place \(p + (p - 1)(n - 2)\) pebbles on the vertices of \(G\). If there is a vertex \(w\) of \(C_j\) \((j \neq i)\) with at least \(p\) pebbles then a pebble can be moved to \(v\). Otherwise, there is a vertex \(w_i\) of \(C_k\) \((k \neq i)\) with at most \((p - 1)\) pebbles then at least \(p + (p - 1)(n - 3)\) pebbles are distributed onto each of \(n - p - 1\) vertices of
Since \(s_i \leq s_1 < n - p \) then using \((p - 1)p\) pebbles we can move at the most \((p - 1)\) pebbles to \(w_1 \). So \(w_1 \) has at least \(p \) pebbles, then from \(w_1 \) a pebble can be moved to \(v \). Otherwise every vertex of \(G - C_i \) contains zero pebbles on it. Then either there exists a vertex \(w_2 \) of \(C_i \) with at least \(p^2 \) pebbles or all the vertices of \(C_i - \{v\} \) contains at the most \(p^2 - 1 \) pebbles. So \(p \) pebbles can be moved to a vertex \(w_3 \) of \(C_j \) \((j \neq i)\). From \(w_3 \) a pebble can be moved to the vertex \(v \) of \(C_i \).

Hence in all cases \(f_{gl}(v, G) \geq p + (p - 1)(n - 2) \).

Since \(v \) is arbitrary,

\[f_{gl}(G) \leq p + (p - 1)(n - 2). \]

Case ii: Assume \(n - s_1 \leq p \).

Let us choose the vertex class \(C_1 \). Let \(v \in C_1 \) be our target vertex. Without loss of generality assume that vertex \(v \) has zero pebbles on it. Let us place \(p^2 - 1 \) pebbles on one of the \(s_1 \) vertices of \(C_1 \), and place \((p - 1)\) pebbles on each of the remaining \(s_1 - 2 \) vertices of \(C_1 \). Then \((p - 1)\) pebbles can be moved to the vertex \(w \) of \(C_k \) where \(k \neq 1 \). Now all the pebbled vertices in \(G \) receive \((p - 1)\) pebbles. Hence pebbling move is impossible. So

\[f_{gl}(v, G) > (p^2 - 1) + (p - 1)(s_1 - 2) \geq p^2 + (p - 1)(s_1 - 2). \]

Suppose \(p^2 + (p - 1)(s_1 - 2) \) pebbles are placed on the vertices of \(G \). Let the target vertex be \(v \) of \(C_k \).

If there is a vertex in some \(C_j \) \((j \neq k)\) with at least \(p \) pebbles then a pebble can be placed on \(v \) using \(p \) pebbles.

If not, then every vertex of \(G - C_k \) will contain either zero or at most \((p - 1)\) pebbles on it. If there is a vertex say \(w \) in some \(C_j \) \((j \neq k)\) with a pebble on it we use \(p \) pebbles from a vertex of \(C_k \) to put a pebble on \(w \) then from the remaining
Ch. 4: The Generalized Pebbling Number of Some Graphs

$p(p - 1) + (p - 1)(s_1 - 2) - 1$ vertices we can put $(p - 1)$ pebbles on w and from w a pebble can be moved to v.

Otherwise every vertex of $G - C_k$ will have zero pebbles on it. Then all the $p^2 + (p - 1)(s_1 - 2)$ pebbles are distributed on the vertices of C_k. Then using p^2 pebbles a pebble can be moved to the vertex v of C_k.

Hence $f_{gl}(v, G) \leq (p - 1)(s_1 - 2) + p^2$.

Therefore $f_{gl}(G) \leq p^2 + (p - 1)(s_1 - 2)$, and so the case is complete.

4.3 Computation of generalized t-pebbling number

We define the generalized t-pebbling number of any connected graph G as follows.

Definition 4.3.1. The generalized t-pebbling number of a vertex v in a graph G is the smallest number $f_{gl}(v, G)$ with the property that from every placement of $f_{gl}(v, G)$ pebbles on G, it is possible to move t pebbles to v by a sequence of pebbling moves, where a pebbling move consists of the removal of p pebbles from a vertex and the placement of one of these pebbles on an adjacent vertex.

The generalized t-pebbling number of the graph G, denoted by $f_{gl}(G)$, is the maximum $f_{gl}(v, G)$ over all vertices v of G.

Theorem 4.3.2. Let $P_n : v_0, v_1, v_2, \ldots, v_n$ be a path of length n. Then $f_{gl}(P_n) = tp^n$.

Proof. Place $t(p^n) - 1$ pebbles at one end of the path, we cannot move t pebbles to the other end of the path. So, $f_{gl}(P_n) \geq t$.

We will use induction on t to prove that $f_{gl}(P_n) \leq tp^n$. When $t = 1$, theorem is true by Theorem 4.2.4. Assume $t > 2$. Then there are at least $2p^n$ pebbles on the
path P_n. Using at most p^n pebbles we can move one pebble to the target vertex. With the remaining $(t - 1)p^n$ pebbles we can move $(t - 1)$ pebbles to the target vertex completes the proof.

Theorem 4.3.3. Let U be a rooted tree and let v be the root of U. Let (a_1, a_2, \ldots, a_n) be the path-size sequence for some maximum path partition for U. Without loss of generality, a_1 can be taken to be h, where h is the height of the tree. Then

$$f_{glt}(v, U) = tp^h + \sum_{i=2}^{n} p^{ai} - n + 1.$$

Proof. Let (P_1, P_2, \ldots, P_n) be a maximum path partition for U. Then a_i edges in P_i will touch $a_i + 1$ vertices. Let $Q_i \subseteq V(U)$ contain the a_i of these vertices away from v and let v_i be the vertex in Q_i farthest from v. The Q_i’s are disjoint and do not contain v.

Place $tp^h - 1$ pebbles at v_1 and put $p^{ai} - 1$ pebbles on v_i for $i = 2$ to n. With this configuration, we cannot move t pebbles to v, so $f_{glt}(v, U) \geq tp^h + \sum_{i=2}^{n} p^{ai} - n + 1$.

We will prove the result $f_{glt}(v, U) \leq tp^h + \sum_{i=2}^{n} p^{ai} - n + 1$ by using induction on the number of path partitions.

When $n = 1$, U becomes a path and by Theorem 4.3.2,

$$f_{glt}(v, U) = tp^h = tp^h - 1 + 1.$$

Assume the result is true for $1 \leq n' < n$. To prove that the result is true when the number of path partitions is n, by placing $tp^h + \sum_{i=2}^{n} p^{ai} - n + 1$ pebbles on v, except the root vertex v. At least one of the paths P_i receives at least p^{ai} pebbles. Using p^{ai} pebbles, we can bring one pebble to the end of the path P_i. Remaining $(n - 1)$ paths receive $tp^h + p^{a_2} + p^{a_3} + \cdots + p^{a_{i-1}} + p^{a_{i+1}} + \cdots + p^{a_n} - (n - 1) + 1$ pebbles.
By induction, we can bring t pebbles to a target vertex v.

So $f_{gh}(v, U) \leq tp^n + \sum_{i=2}^{n} p^{n_i} - n + 1$

\[f_{gh}(C_n) = \begin{cases}
 tp^{n/2}, & \text{if } n \text{ is even} \\
 1 + (t-1)p^{[n/2]} + 2\left[\frac{p}{p+1}\right](p^{[n/2]} - 1), & \text{if } n \text{ is odd}
\end{cases} \]

Proof. Let $C_n = (v_0, v_1, v_2, \ldots, v_{n-1})$ be a cycle of length n.

Case i: n is even. Let v_0 be the target vertex. By placing $t(p^{n/2}) - 1$ pebbles at $v_{n/2}$ which is the farthest vertex from v_0. We cannot move t pebbles to v_0. So $f_{gh}(v_0, C_n) \geq t(p^{n/2})$.

Case ii: n is odd. Let $k = \left\lceil \left(\frac{p}{p+1}\right)(p^{[n/2]} - 1) \right\rceil$, $m = (t-1)p^{[n/2]}$ and $N = m + 2k$. Place $m + k$ pebbles at $v_{[n/2]}$, and place k pebbles at $v_{[n/2]+1}$. If we move pebbles from $v_{[n/2]}$ to $v_{[n/2]+1}$ we can move $\left\lfloor \frac{m+k}{p} \right\rfloor$ pebbles to $v_{[n/2]+1}$ and so the vertex $v_{[n/2]+1}$ has a total of $\left\lfloor \frac{m+k}{p} \right\rfloor + k$ pebbles which is equal to $(p+t-1)p^{[n/2]} - 1 - 1$ pebbles. But the vertex $v_{[n/2]+1}$ is at a distance $\lfloor n/2 \rfloor$ from v_0 and so we cannot move t pebbles to v_0. If we move pebbles from $v_{[n/2]+1}$ to $v_{[n/2]}$ we can move $\left\lfloor \frac{k}{p} \right\rfloor$ pebbles to $v_{[n/2]}$ and so $v_{[n/2]}$ has $tp^{[n/2]} - 1$ pebbles and so we cannot move t pebbles to v_0. So $f_{gh}(v_0, C_n) \geq 1 + N$.

We use induction on t to prove these numbers of pebbles are sufficient, where the case $t = 1$ is given by Theorem 4.2.5. Consider the paths

$P_1 = (v_0, v_1, v_2, \ldots, v_{[n/2]})$ and $P_2 = (v_{[n/2]+1}, v_{[n/2]+2}, \ldots, v_{n-1}, v_0)$.

If $t > 1$, (regardless of whether n is even or odd), there are at least $2p^{n/2}$ pebbles on the graph, so we may assume that at least $p^{[n/2]}$ pebbles are on one of the paths P_1 and P_2. Therefore, we can move one of these pebbles to v_0. By induction, the
Ch. 4: The Generalized Pebbling Number of Some Graphs

remaining \(f_{glt}(C_n) + p^{\lfloor n/2 \rfloor} (t - 2) \) pebbles suffice to put \((t-1)\) additional pebbles on \(v_0\).

\[\text{Theorem 4.3.5.} \] Let \(G \) be a connected graph on \(n \) vertices, where \(n \geq 3 \). Let there be a vertex \(v \) such that \(d(v) = n - 1 \), the generalized \(t \)-pebbling number \(f_{glt}(v, G) = pt + (p - 1)(n - 2) \).

\[\text{Proof.} \] Place \(pt - 1 \) pebbles at any vertex other than \(v \) and place \((p - 1)\) pebbles at every other vertex except on \(v \), then \(t \) pebbles cannot be moved to \(v \). So, \(f_{glt}(v, G) \geq pt + (p - 1)(n - 2) \).

We use induction on \(t \), to prove that \(f_{glt}(v, G) \leq pt + (p - 1)(n - 2) \). Place zero pebbles on \(v \). For \(t = 1 \), the result is true by Theorem 4.2.2. For \(t > 1 \), there are at least \(2p + (p - 1)(n - 2) \) pebbles on \(G \). Using \((p - 1)n - (p - 2)\) pebbles, we can put a pebble on \(v \), since \(d(v) = n - 1 \). By induction, we can use the remaining \(p(t - 1) + (p - 1)(n - 2) \) pebbles to put \((t - 1)\) additional pebbles on \(v \). So \(f_{glt}(v, G) \leq pt + (p - 1)(n - 2) \).

\[\text{Theorem 4.3.6.} \] Let \(K_n \) be the complete graph on \(n \) vertices, where \(n \geq 3 \). Then \(f_{glt}(K_n) = pt + (p - 1)(n - 2) \).

\[\text{Proof.} \] Follows from Theorem 4.3.5.

\[\text{Theorem 4.3.7.} \] Let \(K_{1,n} \) be an \(n \)-star where \(n > 1 \), then

\[f_{glt}(K_{1,n}) = p^2 t + (p - 1)(n - 2), \quad \text{where} \quad p \geq 2. \]

\[\text{Proof.} \] Let \(V(K_{1,n}) = V_1 \cup V_2 \), where \(V_1 = \{r\} \) and \(V_2 = \{s_1, s_2, \ldots, s_n\} \). By Theorem 4.3.6, \(f_{glt}(r, K_{1,n}) = pt + (p - 1)(n - 1) \).
We place zero pebbles on \(r \) and \(s_1 \). Place \(p^2 t - 1 \) pebbles at \(s_2 \) and \((p - 1)\) pebbles at each of the vertices \(s_3, s_4, \ldots, s_n \). We cannot move \(t \) pebbles to \(s_1 \). So
\[
\text{fglt}(s_1, K_{1,n}) \geq p^2 t + (p - 1)(n - 2).
\]

We will use induction on \(t \) to prove that \(p^2 t + (p - 1)(n - 2) \) pebbles are sufficient to put \(t \) pebbles on \(s_1 \). Place zero pebbles on \(s_1 \).

For \(t = 1 \), the result is true by Theorem 4.2.6.

For \(t > 1 \), there are at least \(2p^2 + (n - 2)(p - 1) \) pebbles on \(K_{1,n} \).

Case i: If \(r \) has at least \(p \) pebbles, then we can put a pebble on \(s_1 \) using \(p \) pebbles of \(r \). From the remaining \(p^2 t - p + (n - 2)(p - 1) \) pebbles, \(p^2(t - 1) + (p - l)(n - 2) \) pebbles will be sufficient to put \((t - 1) \) additional pebbles on \(s_1 \).

Case ii: If there is a vertex in \(V_2 - \{s_1\} \) with at least \(p^2 \) pebbles or there are \(p \) vertices in \(V_2 - \{s_1\} \) with at least \(p \) pebbles each, then by using \(p^2 \) pebbles, we can put \(p \) pebbles on \(r \) and so we can move a pebble to \(s_1 \). By induction, the remaining \(p^2(t - 1) + (n - 2)(p - 1) \) pebbles will be sufficient to put \((t - 1) \) additional pebbles on \(s_1 \). These are the only two cases which arise. Otherwise, the total number of pebbles placed will be at most \(2p^2 + (n - 2)(p - 1) \), which contradicts the fact that there are at least \(2p^2 + (n - 2)(p - 1) \) pebbles on the graph. So, \(\text{fglt}(s_1, K_{1,n}) \leq p^2 t + (n - 2)(p - 1) \).

So, \(\text{fglt}(s_1, K_{1,n}) = p^2 t + (n - 2)(p - 1) \).

Hence, \(\text{fglt}(K_{1,n}) = p^2 t + (n - 2)(p - 1) \) (since \(s_1 \) is arbitrary).

Theorem 4.3.8. Let \(K_1 = \{h\} \). Let \(C_n = \{v_1, v_2, \ldots, v_n\} \) be a cycle of length \(n \). Then the generalized \(t \)-pebbling number of the wheel graph \(W_n \) is
\[
\text{fglt}(W_n) = p^2(t - 1) + (p - 1)n + (p^2 - 2p + 1).
\]
Ch. 4: The Generalized Pebbling Number of Some Graphs

Proof. By Theorem 4.3.6, \(f_{glt}(h, W_n) = pt + (p - 1)(n - 1) \). Let us now find the generalized \(t \)-pebbling number of \(v_1 \). Assume that \(v_1 \) has zero pebbles. Let us place \((p^2t - 1)\) pebbles at \(v_{\lceil n/2 \rceil} \), \((p-2)\) pebbles at \(v_n \) and \((p - 1)\) pebbles at each of \(W_n - \{v_1, v_{\lceil n/2 \rceil}, v_n\} \). Then \(t \) pebbles cannot be moved to \(v_1 \).

So \(f_{glt}(v_1, W_n) \geq p^2(t - 1) + (p - 1)n + (p^2 - 2p + 1) \).

Let us use induction on \(t \) to prove that

\[
f_{glt}(v_1, W_n) \geq p^2(t - 1) + (p - 1)n + (p^2 - 2p + 1)\]

For \(t = 1 \), the result is true by Theorem 4.2.15.

By distributing \(p^2(m - 2) + (p - 1)n + (p^2 - 2p + 1) \) pebbles on \(W_n - \{v_1\} \), then we can move \((m - 1)\) pebbles to the target vertex \(v_1 \).

i.e., \(f_{gl}(m - 1)(W_n) = p^2(m - 2) + (p - 1)n + (p^2 - 2p + 1) \). Suppose \(p^2(m - 1) + (p - 1)n + (p^2 - 2p + 1) \) pebbles are distributed onto the vertices of \(W_n - \{v_1\} \). Let the target vertex be \(v_1 \) of \(C_n \).

If there is a vertex in \(C_n \) with at least \(p^2 \) pebbles, then a pebble can be moved to \(v_1 \), using only \(p^2 \) pebbles through \(h \). The remaining \(p^2(m - 2) + (p - 1)n + (p^2 - 2p + 1) \) pebbles are sufficient to put \((m - 1)\) additional pebbles on \(v_1 \) by using induction. Otherwise any one of the vertices of \(W_n - \{v_1\} \) say \(v_{\lceil n/2 \rceil} \) receive at least \(p \) pebbles and each of the vertices \(W_n - \{v_1, v_{\lceil n/2 \rceil}\} \) receive \(p-1 \) pebbles then from \(v_{\lceil n/2 \rceil} \), using a sequence of pebbling moves \(v_{\lceil n/2 \rceil}, v_{\lceil n/2 \rceil - 1}, \ldots, v_1 \), we can move a pebble to \(v_1 \). Remaining \(p^2+(p-1) \) \((n - \lceil n/2 \rceil + 2) + (p^2 - 3p + 1) \) > 0. So by induction, \((m - 1)\) pebbles can be moved to \(v_1 \). Hence in all cases \(f_{glm}(v_1, W_n) \geq p^2(m - 1) + (p - 1)n + (p^2 - 2p + 1) \).

Therefore \(f_{glt}(W_n) = p^2(m - 1) + (p - 1)n + (p^2 - 2p + 1) \). ■
Theorem 4.3.9. For $G = K^s_{s_1 s_2 \ldots s_r}$, the generalized t-pebbling number for a complete r-partite graph G is given by

$$f_{glt}(G) = \begin{cases}
pt + (p-1)(n-2), & \text{if } pt < n - s_1 \\
pt + (p-1)(s_1 - 2), & \text{if } pt \geq n - s_1.
\end{cases}$$

Proof. Case 1: Assume $pt < n - s_1$.

Let us place $pt + (p-1)(n-2) - 1$ pebbles on the vertices of $G - \{v\}$ as follows. Let us choose $(t-1)$ vertices and we place $p + (p-1)$ pebbles on each of the $(t-1)$ vertices and we place $(p-1)$ pebbles each on the remaining vertices. Clearly t pebbles cannot be moved to v. Hence

$$f_{glt}(v,G) > (t-1)[p + (p-1)] + (p-1)(n-t)$$

$$= pt + (p-1)(n-2) - 1$$

$$\geq pt + (p-1)(n-2).$$

Next we will use induction to show that $pt + (p-1)(n-2)$ pebbles are sufficient to move t pebbles to any desired vertex. For $t = 1$ result is true by Theorem 4.2.17. Suppose $t > s_1$, and $pt + (p-1)(n-2)$ pebbles are placed on the vertices of G. Let the target vertex be v of C_k for some $k = 1, 2, \ldots, n$. If there is a vertex w of C_j ($(j \neq k)$ with at least p pebbles then a pebble can be placed on v.

The remaining $p(t-1) + (p-1)(n-2)$ pebbles are sufficient to put $(t-1)$ additional pebbles on v by induction. If not then every vertex of $G - C_k$ will have at most $(p-1)$ pebbles on it. Suppose among these $n - s_k$ vertices, q is the number of vertices with at least one pebble. Therefore there will be $pt + (p-1)(n-2) - q$ pebbles on the vertices of C_k. We consider the following cases.
Subcase 1.1: \(q \geq t \).

We use pebbling moves from \(s_k - 1 \) vertices of \(C_k - \{v\} \) to put the remaining (at most) \((p-1) \) pebbles on each of the \(t \) of the \(q \) occupied vertices of \(G - C_k \). Using \((p-1)t \) pebbles we can pebble \(t \) vertices with \((p-1) \) pebbles. Then remaining \((p-1)(n-2) - (q-t) \) pebbles are in \(C_k - \{v\} \). From the \(t \) vertices with \(p \) pebbles we can move \(t \) pebbles to \(v \).

Subcase 1.2: \(q < t \).

As in Subcase (i) first we will put \((p-1) \) more pebbles on each of these \(q \) vertices by making \((p-1)q \) moves from the vertices of \(C_k - \{v\} \) in order to put \(q \) pebbles on \(v \). Then we have to place \((t-q) \) additional pebbles on \(v \). So we use \(p^2(t-q) + (p-1)pq = p^2t - pq \) pebbles among \(pt + (p-1)(n-2) - q \) pebbles in the vertices of \(C_k - \{v\} \).

Hence in all the cases \(f_{gl}(v,G) \leq pt + (p-1)(n-2) \).

Case ii: Assume \(pt \geq n-s_1 \).

Let the vertices of \(C_1 \) be \(v_1, v_2, \ldots, v_{s_1} \) and let \(v_{s_1} \) be the target vertex. Let us place \(p^2t + (p-1)(s_1-2) \) pebbles on the vertices of \(C_1 \) as follows. Let us place \(p^2t - 1 \) pebbles on \(v_1 \) and place \((p-1) \) pebbles each on \((s_1-2) \) vertices of \(C_1 \) other than \(v_1 \) and \(v_{s_1} \). In this case \(t \)-pebbles cannot be moved to \(v_{s_1} \).

Hence \(f_{gl}(G) \geq p^2t + (p-1)(s_1-2) \).

Next we will use induction on \(t \) to prove that \(p^2t + (p-1)(s_1-2) \) pebbles are sufficient to put \(t \) pebbles on any desired vertex. Clearly the claim is true for \(pt = n-s_1 \) since by Case (i),
\[
f_{gl}(G) = pt + (p-1)(n-2) = pt + (p-1)(pt+s_1-2) = p^2t + (p-1)(s_1-2).
\]

Suppose \(p(m-1) > n-s_1 \) and
\[
f_{gl(n-1)}(G) = p^2(m-1) + (p-1)(s_1-2) = p^2m + (p-1)s_1 - (p^2 + 2p + 2).\]
Ch. 4: The Generalized Pebbling Number of Some Graphs

We prove the result is true for \(m \) where \(pm > n - s_1 \). Suppose \(p^2 m + (p - 1)(s_1 - 2) \) pebbles are distributed on the vertices of \(G \). Let the target vertex be \(v \) of \(C_k \). If there is a vertex in some \(C_j \) \((j \neq k)\) with at least \(p \) pebbles, then a pebble can be placed on \(v \) using only \(p \) pebbles. The remaining \(p^2 m + (p - 1)s_1 - 3p + 2 \) pebbles are sufficient to put \((m - 1)\) additional pebbles on \(v \), since \(p^2 + 2p - 2 - 3p + 2 > 0 \). If not then every vertex of \(G - C_k \) will contain either zero or at least one pebble on it. If there is a vertex say \(w \) in some \(C_j \) \((j \neq k)\) with at least one pebble on it, we use \((p - 1)p\) pebbles from the vertices of \(C_k \) to put \((p - 1)\) pebbles on \(w \) and hence a pebble can be placed on \(v \). Since \(p^2 + 2p - 2 - (p - 1)(p + 3) > 0 \), the remaining \(f_{glt}(m - 1)(G) \) pebbles would suffice to put \((m - 1)\) additional pebbles on \(v \). Otherwise, every vertex of \(G - C_k \) will have zero pebbles, using \(p^2 \) pebbles we can place a pebble on \(v \) in this case the remaining \(p^2(m - 1) + (p - 1)(s_1 - 2) \) pebbles would suffice to put \((m - 1)\) additional pebbles on \(v \). Thus \(f_{glt}(v, G) \leq p^2 m + (p - 1)(s_1 - 2) \). Therefore by induction \(f_{glt}(v, G) \leq p^2 t + (p - 1)(s_1 - 2) \) for all \(pt > n - s_1 \).

Thus \(f_{glt}(G) < p^2 t + (p - 1)(s_1 - 2) \) for all \(pt \geq n - 1 \) and so the proof is over.

Theorem 4.3.10. The generalized \(t \)-pebbling number of a cube \(Q_n \) is \(f_{glt}(Q_n) = tp^n \).

Proof. Suppose we place \(t(p^n) - 1 \) pebbles at a vertex which is at a distance \(n \) from any target vertex, then \(t \) pebbles cannot be moved to \(v \), so \(f_{glt}(Q_n) \geq tp^n \).
Let us use induction on \(t \) to prove that \(f_{gl}(Q_n) \leq tp^n \). For \(t = 1 \), the result is true by Theorem 4.2.13.

For \(t > 1 \), there are at least \(2p^n \) pebbles on \(Q_n \). Using \(p^n \) pebbles by Theorem 4.2.13 we can move a pebble on any target vertex. Then by induction, the remaining \((t-1)p^n \) pebbles will be sufficient to put \((t-1) \) additional pebbles on the target vertex. So \(f_{gl}(Q_n) \leq tp^n \). ■

4.4 The generalized \(p \)-pebbling property

Chung [2] defined the two pebbling property of a graph and Wang [28] extended Chung’s definition to the odd two-pebbling property. We define the generalized \(p \) pebbling property as follows:

Definition 4.4.1 (Generalized \(p \)-pebbling property). Suppose \(a \) pebbles are distributed on the vertices of \(G \) in such a way that \(b \) vertices of \(G \) are occupied. i.e., there are exactly \(b \) vertices which have at least one pebble. We say the graph \(G \) satisfies the generalized \(p \) pebbling property, if we can put \(p \) pebbles on any specified vertex of \(G \) starting from every configuration in which \(a \geq pf_{gl}(G) - b + 1 \) or equivalently \(\frac{a+b}{p} > f_{gl}(G) \).

We show that path \(P_n \), complete graph \(K_n \), cycle \(C_n \), star \(K_{1,n} \) satisfy the generalized \(p \) pebbling property.

Theorem 4.4.2. Path \(P_2 \) satisfies the generalized \(p \) pebbling property.
Proof. Let \(V(P_2) = \{u_1, u_2\} \). Suppose \(pf_{gl}(P_2) - b + 1 \) which is \(p^2 - b + 1 \) pebbles are placed on the vertices of \(P_2 \). Without loss of generality assume that \(u_1 \) is our target vertex.

Case 1: If \(b = 1 \), and \(p^2 \) pebbles are placed on \(u_1 \), then we are done. Otherwise we can move \(p \) pebbles to \(u_1 \) from \(u_2 \).

Case 2: If \(b = 2 \), and \(u_1 \) receives \(x < p \) pebbles, then \(u_2 \) has at least \(p^2 - 1 - x \) pebbles. Using \(p(p-x) \) pebbles, \((p-x) \) pebbles can be moved to \(u_1 \) while leaving \(((p-1)x-1) \) pebbles on \(u_2 \). Hence we are done.

Notation 4.4.3. Let the vertices of \(P_n \) be \(\{v_1, v_2, \ldots, v_n\} \). Given a distribution of pebbles on \(P_n \) we let \(a \) and \(b \) denote the number of pebbles and number of occupied vertices in \(P_n \) respectively. We define the vertex sets \(A \) and \(B \) by \(A = \{v_1, v_2, \ldots, v_{n-1}\}, B = \{v_2, v_3, \ldots, v_n\} \). We let \(a_A, a_B, b_A \) and \(b_B \) denote the number of pebbles on \(A \) and \(B \) and number of occupied vertices in \(A \) and \(B \) respectively.

We let \(a_n \), the number of pebbles on vertex \(v_n \) and let

\[
b_n = \begin{cases}
1, & \text{if } v_n \text{ is occupied} \\
0, & \text{otherwise}
\end{cases}
\]

For \(n \geq 3 \), we call \(v_1 \) and \(v_n \) as end vertices and each \(v_i \) \((2 \leq i \leq n-1)\) as an internal vertex.

Theorem 4.4.4. Any Path \(P_n \) satisfies the generalized \(p \) pebbling property.

Proof. The proof is by induction on \(n \), the number of vertices. For \(n = 2 \), the theorem is true by Theorem 4.4.2. Suppose as the induction hypothesis, that \(n > 2 \) and that whenever \(pf_{gl}(P_{n-1}) - b + 1 \) pebbles are distributed onto the vertices of path on \(n-1 \) vertices, \(p \) pebbles can be moved to our desired vertex.
Let $p_{fg}(P_n) - b + 1 = p^n - b + 1$ pebbles are distributed on the vertices of P_n.

Case 1: Let v_i $(2 \leq i \leq n-1)$ be the target vertex. In the given distribution, assume without loss of generality there are at least $p_{fg}(P_n)$ pebbles on A. Otherwise there are at least $p_{fg}(P_n)$ pebbles on B. So, by induction we can put p pebbles on the target.

Case 2: Now let the end vertex v_1 be our target vertex. If $a_A > p_{fg}(P_{n-1}) - b_A$ then we are through.

If $f_{gl}(P_{n-1}) < a_A < p_{fg}(P_{n-1}) - b_A$, then one pebble can be moved to v_1.

Now $a_n \geq p_{fg}(P_n) - b - p_{fg}(P_{n-1}) + b_A + 1. = (p - 1)f_{gl}(P_n) - b_n + 1$.

Hence using $(p - 1)f_{gl}(P_n)$ we may move $(p - 1)$ pebbles to our target vertex v_1 and we are done.

Finally if $a_A < f_{gl}(P_{n-1})$, then let $a_A = f_{gl}(P_{n-1}) - x$ for some integer x. Now

$$a_n = a - a_A$$

$$= p_{fg}(P_n) - f_{gl}(P_{n-1}) - x$$

$$= (p - 1)f_{gl}(P_n) + px + (p - 1)p^{n-2} - (p - 1)x - b + 1.$$

With the help of px pebbles in v_n, x pebbles can be moved to A from v_n and hence with the help of $f_{gl}(P_{n-1})$ pebbles in A one pebble can be moved to our target vertex. Again with the help of $(p - 1)f_{gl}(P_n)$ pebbles in v_n, $(p - 1)$ pebbles can be moved to our target vertex. This leaves us with at least $(p - 1)p^{n-2} - (p - 1)x - b + 1$ pebbles on v_n.

By symmetry we can pebble v_n, using any configuration of $p_{fg}(G) - b + 1$ pebbles on P_n.

\[\blacksquare\]
Notation 4.4.5. Let K_n be a complete graph on n vertices v_1, v_2, \ldots, v_n where $n \geq 2$. Let K_{n-1} be the complete sub graph of K_n induced by vertices $v_1, v_2, \ldots, v_{n-1}$. Let a', a, a_n be the number of pebbles in K_{n-1}, K_n and vertex v_n respectively. Let b', b be the number of occupied vertices in K_{n-1}, K_n respectively.

Let $b_n = \begin{cases} 1, & \text{if } v_n \text{ is occupied}, \\ 0, & \text{otherwise}. \end{cases}$

Theorem 4.4.6. Any complete graph K_n on n vertices satisfies the generalized p pebbling property.

Proof. The proof is by induction on n. For $n = 2$, the result is true by Theorem 4.4.2. Suppose generalized p pebbling property is true in complete graph on $(n - 1)$ vertices say K_{n-1}.

Assume $pf_{gl}(K_n) - a + 1$ pebbles are distributed onto the vertices of K_n where $n \geq 3$. Let v_1 be our target vertex. In the distribution suppose $a' > pf_{gl}(K_{n-1}) - b'$ then we are through.

If $f_{gl}(K_{n-1}) < a' < pf_{gl}(K_{n-1}) - b'$ then we can move a pebble to our target vertex v_1.

Now $a_n \geq a - a' = pf_{gl}(K_n) - b - pf_{gl}(K_{n-1}) + b' + 1 = p(p - 1) - (b - b') + 1 = p(p - 1) - b_n + 1$.

Hence $(p - 1)$ pebbles can be moved to our target vertex v_1, from v_n using $p(p - 1)$ pebbles.
Finally if $a' > f_{gl}(K_{n-1})$, then let $x = f_{gl}(K_{n-1}) - a'$.

Now $a_n = a - a'$

\[
\geq (pf_{gl}(K_n) - b + 1) - (f_{gl}(K_{n-1}) - x)
\]

\[
= (p - 1)f_{gl}(K_n) + px + (p - 1)(1 - x) - b + 1.
\]

Using px pebbles in vertex v_n, x pebbles can be moved to K_{n-1} and hence one pebble can be moved to v_1. Again using $(p - 1)f_{gl}(K_n)$ pebbles in V_n, we can move $(p - 1)$ pebbles to our target vertex v_1 while keeping $(p - 1)(1 - x) - b + 1$ pebbles in v_n, hence we are done.

Notation 4.4.7. Let the vertices of C_m be $\{x_0, x_1, \ldots, x_{m-1}\}$ in order. Without loss of generality assume x_0 is the target vertex in C_m. Given a distribution of pebbles on C_m, we let a_i represent the number of pebbles on x_i, and we let b_i be 1 if x_i is occupied, and 0 otherwise. If m is even, we suppose $m = 2k$, and if m is odd, we let $m = 2k + 1$. In either case we define the vertex sets A and B by

\[
A = \{x_1, x_2, \ldots, x_{k-1}\};
\]

\[
B = \{x_{m-1}, x_{m-2}, \ldots, x_{m-k+1}\}.
\]

We let a_A, a_B, b_A and b_B denote the number of pebbles on A and B and number of occupied vertices in A and B respectively.

Theorem 4.4.8. All cycles satisfy the generalized p pebbling property.

Proof. Let $x_0 \in V(C_n)$ be our target vertex.

Case 1: Let $n = 2k$. Let us assume $a \geq pf_{gl}(C_n) - b + 1$ pebbles are distributed on the vertices of C_n with b occupied vertices. If x_0 is occupied with x pebbles, then
using \((p-x)f_{gl}(C_n)\) pebbles we can move \((p-x)\) pebbles to \(x_0\) while keeping
\((x-1)(f_{gl}(C_n) - 1)\) pebbles in \(C_n - \{x_0\}\) since
\(a \geq (p-x)f_{gl}(C_n) + (x-1)(f_{gl}(C_n) - 1)\). Suppose \(x_0\) is not occupied. Then

\[a_A + b_A + a_B + b_B + a_k + b_k = a + b > p^{k+1} + 1.\]

Either \(a_A + b_A > p^k\) or \(a_B + b_B > p^k\). Without loss of generality assume
\(a_A + b_A > p^k\). If \(a_A + b_A > p^k\), then pebbles on \(A\) are sufficient to put \(p\) pebbles on \(x_0\), since \(A \cup \{x_0\}\) is isomorphic to path on \(k\) vertices \(P_k\), which satisfies the
generalized \(p\) pebbling property by Theorem 4.4.4. Thus we assume \(a_A + b_A \leq p^k\)
and similarly \(a_B + b_B < (p-1)p^k\) and we show that we can simultaneously put
\(p\) pebbles on \(x_1\) and \(p(p-1)\) pebbles on \(x_{2k-1}\). Suppose \(a_A + b_A = p^k\). Then we
can put \(p\) pebbles on \(x_1\) since path \(P_A = P_{k-1}\) and \(f_{gl}(P_A) = p^k\). Again suppose
\(a_B + b_B = (p-1)p^k\). Then we can put \((p-1)p\) pebbles on \(x_{2k-1}\), since path
\(P_B = P_{k-1}\) and \(f_{gl}(P_B) = p^{k-2}\) and hence \(p\) pebbles can be moved to our target \(x_0\).

If \(a_A + b_A < p^k\) and \(a_B + b_B < (p-1)p^k\), then let

\[a'_k = p^k - a_A - b_A\]
\[a''_k = (p-1)p^k - a_B - b_B\]

But \(a_k \geq (p^k - a_A - b_A) + ((p-1)p^k - a_B - b_B) + (1 - b_k) \geq a'_k + a''_k\).

So, there are enough pebbles on \(x_k\), we let \(b'_k = 1\) and \(b''_k = 1\). Hence \(a_A + b_A +
\[a'_k + b'_k = p^k + 1\] and we can put \(p\) pebbles on \(x_1\). Similarly \(a_B + b_B + a''_k + b''_k =
(p-1)p^k + 1\) and we can put \((p-1)p\) pebbles on \(x_{2k-1}\), so we can put \((p-1)\)
pebbles on \(x_0\) from \(x_{2k-1}\) and one pebble from \(x_1\) and we are done.
Case 2: \(n = 2k + 1 \) \((k \geq 2)\).

We know that \(f_{\text{glt}}(C_n) = 1 + (t - 1)p^{\lfloor n/2 \rfloor} + 2 \left\lceil \left(\frac{p}{p+1} \right) \left(p^{\lfloor n/2 \rfloor} - 1 \right) \right\rceil \)

Let us place \(p \left(1 + 2 \left\lceil \left(\frac{p}{p+1} \right) \left(p^{\lfloor n/2 \rfloor} - 1 \right) \right\rceil \) - \(b + 1 \) pebbles on the vertices of \(C_n \). It is enough to show that

\[
p \left(1 + 2 \left\lceil \left(\frac{p}{p+1} \right) \left(p^{\lfloor n/2 \rfloor} - 1 \right) \right\rceil \right) - \(b + 1 \)
\geq 1 + 2 \left\lceil \left(\frac{p}{p+1} \right) \left(p^{\lfloor n/2 \rfloor} - 1 \right) \right\rceil + (p - 1)p^{\lfloor n/2 \rfloor}
\]

For this it is enough to show that \(1 + 2 \left\lceil \left(\frac{p}{p+1} \right) \left(p^{\lfloor n/2 \rfloor} - 1 \right) \right\rceil > p^{\lfloor n/2 \rfloor} \).

Consider \(1 + 2 \left\lceil \left(\frac{p}{p+1} \right) \left(p^{\lfloor n/2 \rfloor} - 1 \right) \right\rceil - p^{\lfloor n/2 \rfloor} \).

\[
1 + 2 \left\lceil \left(\frac{p}{p+1} \right) \left(p^{\lfloor \frac{n}{2} \rfloor} - 1 \right) \right\rceil - p^{\lfloor \frac{n}{2} \rfloor} = 1 + 2 \left[\frac{p \cdot p^{\lfloor n/2 \rfloor} - p}{p + 1} \right] - \frac{p \cdot p^{\lfloor n/2 \rfloor} - p^{\lfloor n/2 \rfloor}}{p + 1}
= 1 + \frac{2p \cdot p^{\lfloor n/2 \rfloor} - 2p - p \cdot p^{\lfloor n/2 \rfloor} - p^{\lfloor n/2 \rfloor}}{p + 1}
= 1 + \frac{p \cdot p^{\lfloor n/2 \rfloor} - 2p - p^{\lfloor n/2 \rfloor}}{p + 1}
= 1 + \frac{p^{\lfloor n/2 \rfloor}(p - 1) - 2p}{p + 1}
> 1
\]

Since \(p \geq 2 \), \(p - 1 \geq 1 \) and \(p^{\lfloor n/2 \rfloor}(p - 1) \geq p^2 \geq 4 \) as \(n \geq 5 \).

Again \(2p \geq 4 \).

Theorem 4.4.9. Any star \(K_{1, n} \) \((n \geq 2)\) satisfies generalized pebbling property.

Proof. Let \(V(K_{1, n}) = U \cup W \) where \(U = \{u\} \) and \(W = \{w_1, w_2, \ldots, w_n\} \). Without loss of generality, let \(V(K_{1, n-1}) = \{u, w_1, w_2, \ldots, w_{n-1}\} \). We will prove the result by induction on \(n \). For \(n = 2 \), \(K_{1, 2} \cong P_3 \) and from Theorem 4.3.4, result follows.
Assume \(n \geq 3 \). Let \(a', a, a_n \) be number of pebbles in \(K_{1,n-1}, K_{1,n} \) and \(v_n \) respectively. Let \(b', b, b_n \) be the number of occupied vertices in \(K_{1,n-1}, K_{1,n} \) and vertex \(v_n \) respectively. Suppose \(a' > pf_{gl}(K_{1,n-1}) - b' \) then we are done by induction. If \(f_{gl}(K_{1,n-1}) < a' < pf_{gl}(K_{1,n-1}) - b' \), then we can move a pebble to our target vertex.

Then \(a - f_{gl}(K_{1,n-1}) = pf_{gl}(K_{1,n}) - b + 1 - f_{gl}(K_{1,n-1}) \)

\[= (p - 1)f_{gl}(K_{1,n}) - b + p. \]

Hence using \((p - 1)f_{gl}(K_{1,n}) \) pebbles in \(K_{1,n} \) we can move \((p - 1) \) pebbles to our target vertex while leaving \(p - b \) pebbles in \(K_{1,n} \). Finally if \(a' < f_{gl}(K_{1,n-1}) \) then let \(a' = f_{gl}(K_{1,n-1}) - x \). Number of pebbles in \(v_n \) is

\[a_n = a - a' \geq pf_{gl}(K_{1,n}) - b + 1 - f_{gl}(K_{1,n-1}) \]

\[= (p - 1)f_{gl}(K_{1,n}) + px + (p - 1)(1 - x) - b + 1. \]

Using \(px \) pebbles we can move \(x \) pebbles to \(K_{1,n-1} \) from \(v_n \) and hence one pebble can be moved to our target vertex. Again using \((p - 1) f_{gl}(K_{1,n}) \) pebbles \((p - 1) \) pebbles can be moved to our target vertex while keeping \((p - 1)(1 - x) - b + 1 \) pebbles in \(v_n \). Hence we are done.

\[\square \]

4.5 The generalized pebbling conjecture on the products of graphs

We show that for any connected graphs \(G \) and \(H \), and if \(H \) satisfies the generalized \(p \)-pebbling property, then the pebbling number of \(G \times H \) satisfies \(f_{gl}(G \times H) \leq f_{gl}(G)f_{gl}(H) \).
Theorem 4.5.1. Let P_2 be the path on two vertices say u_1 and u_2. Let G be a graph with generalized p pebbling property. Then $f_{gl}(P_2 \times G) \leq f_{gl}(P_2)f_{gl}(G) = pf_{gl}(G)$. Furthermore, if $f_{gl}(P_2 \times G) = f_{gl}(P_2)f_{gl}(G)$ then $P_2 \times G$ has the generalized p pebbling property.

Proof. Let $V(P_2) = \{u_1, u_2\}$ and let $y \in G$. Without loss of generality we assume the target vertex on $P_2 \times G$ is $r = (u_1, y)$ and then choose $r' \in V(G_2) \cap N(r)$ where $N(v)$ is the neighborhood of a vertex v. We denote the two copies of G in $P_2 \times G$, i.e., $\{u_i\} \times G$, $i = 1, 2$ respectively by G_i. Let a_i denote the number of pebbles on G_i with b_i occupied vertices and let $a = a_1 + a_2$ and $b = b_1 + b_2$. Suppose we start with a configuration of $pf_{gl}(G)$ pebbles.

Suppose $a_1 \geq f_{gl}(G_1)$, then a pebble can be moved to (u_1, y). Assume $a_1 < f_{gl}(G_1)$. Then for some integer x we have

$$a_1 = f_{gl}(G_1) - x \text{ and } a_2 = (p - 1)f_{gl}(G_2) + x.$$

Since $G \cong G_2$ has the generalized p pebbling property we may assume

$$x \leq f_{gl}(G_2) - b_2. \quad (4.4)$$

Otherwise we could move p pebbles to r' and then one to r. From Eq. (4.4), it follows that $b_2 \leq f_{gl}(G_2) - x$.

Now we will move as many pebbles as possible from G_2 to G_1. We can move at least

$$\frac{(p - 1)f_{gl}(G_2) + x - b_2}{p} \geq \frac{(p - 1)f_{gl}(G_2) + x - (p - 1)(f_{gl}(G_2) - x)}{p} = x$$
pebbles to \(G_1 \) yielding \(f_{gl}(G_1) \) pebbles on \(G_1 \) and then we can move a pebble to \(r \). Therefore \(f_{gl}(P_2 \times G) \leq p f_{gl}(G) \). Now to prove the second part of the theorem assume that \(f_{gl}(P_2 \times G) < f_{gl}(P_2) f_{gl}(G) = p f_{gl}(G) \) and that \(a = p f_{gl}(G) - b + 1 \).

If \(a_1 > p f_{gl}(G_1) - b_1 \), then since \(G_1 \) has the generalized \(p \) pebbling property we are done. Otherwise \(f_{gl}(G_1) < a_1 \leq p f_{gl}(G_1) - b_1 \). We can move one pebble to \(r \).

And since \(a_2 \geq p f_{gl}(P_2) f_{gl}(G) - b - (p f_{gl}(G_1) - b_1) + 1 \)
\[= (p - 1) p f_{gl}(G_2) - b_2 + 1. \]

So we can move \((p - 1)p\) pebbles to \(r' \) and then \((p - 1)\) to \(r \). Finally, if \(a_1 < f_{gl}(G_1) \) then \(a_1 = f_{gl}(G_1) - x \) for some \(x \).

Then \(a_2 = a - a_1 \)
\[= (p^2 f_{gl}(G) - b + 1) - (f_{gl}(G_1) - x) \]
\[= (p^2 - 1) f_{gl}(G) - b_1 - b_2 + x + 1 \]
\[\geq p(p - 1) f_{gl}(G) - b_2 + px + 1 \]

Since \(b_1 \leq f_{gl}(G_1) - x \leq (p - 1) f_{gl}(G_1) - (p - 1)x \)

Thus \(a_2 \geq p(p - 1) f_{gl}(G) - b_2 + px + 1 \)
\[\geq (p^2 - p - 1) b_2 + px + 1 \] since \(b_2 \leq f_{gl}(G_2) \)
\[\geq b_2 + px \text{ as } p \geq 2. \]

Thus we can move \(x \) pebbles to \(G_1 \) yielding \(f_{gl}(G_1) \) pebbles on \(G_1 \). Therefore we can move one pebble to \(r \). Also \(a_2 - px \geq p(p - 1) f_{gl}(G) - b_2 + 1 \) pebbles remain on \(G_2 \). Hence \(p(p - 1) \) pebbles can be moved to \(r' \) and then \((p - 1)\) pebbles can be moved to \(r \) and hence we are done.
Theorem 4.5.2. Let P_m be a path on m vertices. If G satisfies the generalized p pebbling property then $f_{gl}(P_m \times G) \leq p^{m-1} f_{gl}(G)$. If $f_{gl}(P_m \times G) = f_{gl}(P_m)f_{gl}(G)$, then $P_m \times G$ has the generalized p pebbling property.

Proof. Let $V(P_m) = \{v_1, v_2, \ldots, v_m\}$ where $m \geq 2$. The proof is by induction on m. For $m = 2$, the theorem is true by Theorem 4.5.1. Let $y \in V(G)$. For $m \geq 3$ we call (v_1, y) and (v_m, y) as end vertices, we call (v_i, y) as an internal vertex for $i = 2$ to $(m - 1)$.

Let us take an internal vertex to be the target vertex. Then without loss of generality there are at least $p^{m-2} f_{gl}(G)$ pebbles on $\{v_1, v_2, \ldots, v_{m-1}\} \times G$ (otherwise there are at least $p^{m-2} f_{gl}(G)$ pebbles on $\{v_2, v_3, \ldots, v_m\} \times G$). So by induction we can pebble the target vertex.

Now let (v_1, y) be the target vertex. Let a' denote the number of pebbles in $\{v_1, v_2, \ldots, v_{m-1}\} \times G$ and let b' denote the number of vertices with at least one pebble in $\{v_1, v_2, \ldots, v_{m-1}\} \times G$ and let a_n denote the number of pebbles in $\{v_n\} \times G$ and let b_n denote the number of occupied vertices in $\{v_n\} \times G$ and let $a = a' + a_n$ and $b = b' + b_n$. Suppose $a' > p^{m-2} f_{gl}(G)$. Then we are done. Assume $a' < p^{m-2} f_{gl}(G)$. Then for some integer x we have $a' = p^{m-2} f_{gl}(G) - x$ and $a_n = p^{m-2}(p - 1) f_{gl}(G) + x$. Since G has the generalized p pebbling property we may assume

$$x \leq p^{m-2} f_{gl}(G) - b_n \quad (4.5)$$

Otherwise we could move p^{m-1} pebbles to a vertex in $\{v_n\} \times G$ and hence a pebble can be moved to our target vertex.

From Eq. 4.5 it follows that $b_n \leq p^{m-2} f_{gl}(G) - x$.

Now we will move as many pebbles as possible from
\{v_n\} \times G \text{ to } \{v_1, v_2, \ldots, v_{n-1}\} \times G. \text{ We can move at least}
\[p^{m-2}(p-1)f_{gl}(G) + x - b_n \]
\[\geq \frac{p^{m-2}(p-1)f_{gl}(G) + x - (p-1)p^{m-2}f_{gl}(G) + (p-1)x}{p} \]
\[= x \]

pebbles to \(\{v_1, v_2, \ldots, v_{n-1}\} \times G\) yielding \(p^{m-2}f_{gl}(G)\) pebbles and then we can
move a pebble to \((v_1, y)\). Therefore \(f_{gl}(P_m \times G) \leq p^{m-1}f_{gl}(G)\).

Without loss of generality assume that \((v_1, y)\) is our target vertex. We will
prove the theorem by induction on \(m\). When \(m = 2\) and \(f_{gl}(P_2 \times G) = pf_{gl}(G)\)
then \(P_2 \times G\) satisfies the generalized \(p\) pebbling property by Theorem 4.5.1. Assume the result is true for \(m-1\). i.e., whenever \(f_{gl}(P_{m-1} \times G) = p^{m-2}f_{gl}(G)\) then \(P_{m-1} \times G\) satisfies the generalized \(p\) pebbling property. Let \(a_i\) denote the number
of pebbles on \(\{v_i\} \times G\) with \(b_i\) occupied vertices where \(i = 1, 2, \ldots, m\).

And let \(a = a_1 + a_2 + \cdots + a_m\),
and let \(b = b_1 + b_2 + \cdots + b_m\).

Assume that \(f_{gl}(P_m \times G) = p^{m-1}f_{gl}(G)\) and that \(a = p^m f_{gl}(G) - b + 1\).

If \(a_1 > pf_{gl}(G) - b_1\), then we are done. Otherwise \(f_{gl}(G) < a_1 \leq pf_{gl}(G) - b_1\),
we can move one pebble to our target vertex \((v_1, y)\).

Again \(a_2 + a_3 + \cdots + a_m \geq p^m f_{gl}(G) - b - (pf_{gl}(G) - b_1) + 1 \]
\[= (p^m - p)f_{gl}(G) - (b - b_1) + 1 \]
\[= (p^m - p^{m-1})f_{gl}(G) + (p^{m-1} - p)f_{gl}(G) - (b_2 + b_3 + \cdots + b_m) + 1 \]
We can move \(p(p-1) \) pebbles to a vertex in \(\{v_2\} \times G \) by induction. Hence \((p-1) \) pebbles can be moved to \((v_1, y)\).

Finally if \(a_1 < f_{gl}(G) \) and let \(a_1 = f_{gl}(G) - x \) for some integer \(x \). Now

\[
a_2 + a_3 + \cdots + a_m
\]

\[
= a - a_1
\]

\[
= (p^m f_{gl}(G) - b + 1) - (f_{gl}(G) - x)
\]

\[
= p^m f_{gl}(G) - b_1 - b_2 - \cdots - b_m + 1 - f_{gl}(G) + x
\]

\[
= p^m f_{gl}(G) - (p-1)f_{gl}(G) + (p-1)x - b_2 - b_3 - \cdots - b_m + 1 - f_{gl}(G) + x,
\]

since

\[
b_1 \leq f_{gl}(G) - x
\]

\[
\leq (p-1)(f_{gl}(G) - x)
\]

\[
= (p^m - p^{m-1}) f_{gl}(G) + (p^{m-1} - p)f_{gl}(G) + px - (b_2 + b_3 + \cdots + b_m) + 1
\]

Using \(px \) pebbles, \(x \) pebbles can be moved to \(\{v_1\} \times G \) and hence one pebble can be moved to \((v_1, y)\). Again using \(p(p-1)p^{m-2}f_{gl}(G) \), pebbles we can move \(p(p-1) \) pebbles to a vertex in \(\{v_2\} \times G \) namely \((v_2, y)\) and hence \((p-1) \) pebbles can be moved to \((v_1, y)\) and we are done.

Corollary 4.5.3. Let \(P_m \) be a path on \(m \) vertices and \(K_n \) be a complete graph on \(n \) vertices. Then \(f_{gl}(P_m \times K_n) \leq f_{gl}(P_m)f_{gl}(K_n) \).

Proof. The corollary follows from Theorem 4.4.6 and Theorem 4.5.2.

\[\]
Corollary 4.5.4. Let P_m be a path on m vertices and $K_{1,n}$ be a star. Then $f_{gl}(P_m \times K_{1,n}) \leq f_{gl}(P_m)f_{gl}(K_{1,n})$.

Proof. The corollary follows from Theorem 4.4.8 and Theorem 4.5.2. □

Corollary 4.5.5. Let P_m be a path on m vertices and C_n ($n \geq 3$) be a Cycle on vertices. Then $f_{gl}(P_m \times C_n) \leq f_{gl}(P_m)f_{gl}(C_n)$.

Proof. The corollary follows from Theorem 4.4.4 and Theorem 4.5.2. □

Theorem 4.5.6. Let K_n be a complete graph on n vertices where $n \geq 2$ and let G be a graph with generalized p pebbling property. Then $f_{gl}(K_n \times G) \leq f_{gl}(K_n)f_{gl}(G)$.

Proof. Let v_1, v_2, \ldots, v_n be the vertices of K_n. The proof is by induction on n.

For $n = 2$, $K_2 = P_2$ and hence the theorem is true by Theorem 4.5.1. Let us assume the result is true when $n' < n$ and $n \geq 3$. Without loss of generality assume the target is (v_1,y). Assume that in $K_n \times G$, we have a_i pebbles occupying b_i vertices of $\{v_i\} \times G$ for $i = 1, 2, \ldots, n$. Let $a = a_1 + a_2 + \cdots + a_n$. If $a_1 \geq f_{gl}(G)$, then we can move a pebble to (v_1,y) since $\{v_1\} \times G$ is isomorphic to G. Hence assume $a_1 < f_{gl}(G)$. There are two cases which arise.

Case 1: Assume $a_1 + a_2 + \cdots + a_{n-1} < b_n$. Then

\[
a_n = a - (a_1 + a_2 + \cdots + a_{n-1}) \\
\geq (p + (p-1)(n-2))f_{gl}(G) - b_n \\
> pf_{gl}(G) - b_n \quad \text{as } p \geq 2 \text{ and } n \geq 3
\]

Hence we can move p pebbles to (v_n,y) and hence a pebble can be moved to (v_1,y) and we are done.
Case 2: Assume \(b_n \leq a_1 + a_2 + \cdots + a_{n-1} \).

We can transfer \(\frac{a_n - (p-1)b_n}{p} \) (by Lemma 4.2.12) pebbles to \((K_n - \{v_n\}) \times G \) which is \(K_{n-1} \times G \), from \(\{v_n\} \times G \).

Therefore, if\(a_1 + a_2 + \cdots + a_{n-1} + \frac{a_n - (p-1)b_n}{p} \geq ((p-1)(n-1) \cdot f_{gl}(G), \)
then a pebble can be placed on \((v_1,y) \) by induction. Hence the only distribution from which we cannot pebble the target satisfies the inequalities

\[
\frac{a_n + b_n}{p} < f_{gl}(G)
\]

i.e.,

\[
\frac{(p-1)a_n + (p-1)b_n}{p} < (p-1)f_{gl}(G)
\] (4.6)

\[
a_1 + a_2 + \cdots + a_{n-1} + \frac{a_n - (p-1)b_n}{p} \leq ((p-1)(n-1) \cdot f_{gl}(G) \) (4.7)

But adding (4.6) and (4.7) gives

\[
a_1 + a_2 + \cdots + a_{n-1} + a_n \leq ((p-1)n - (p-2)) f_{gl}(G).
\]

Thus any distribution of pebbles from which we may not put a pebble on \((v_1,y) \) must begin with less than \(((p-1)n - (p-2)) f_{gl}(G) \) pebbles.

Corollary 4.5.7. Let \(K_m \) be a complete graph on \(m \) vertices. Let \(P_n \) be a path on \(n \) vertices. Then \(f_{gl}(K_m \times P_n) \leq f_{gl}(K_m) f_{gl}(P_n) \).

Proof. The corollary follows from Theorem 4.4.4 and Theorem 4.5.6.

Corollary 4.5.8. Let \(K_m \) be a complete graph on \(m \) vertices. Then \(f_{gl}(K_m \times K_n) \leq f_{gl}(K_m) f_{gl}(K_n) \).

Proof. The corollary follows from Theorem 4.4.6 and Theorem 4.5.6.
Corollary 4.5.9. Let K_m be a complete graph on m vertices. Let C_n ($n \geq 3$) be a cycle on n vertices. Then $f_{gl}(K_m \times C_n) \leq f_{gl}(K_m)f_{gl}(C_n)$.

Proof. The corollary follows from Theorem 4.4.8 and Theorem 4.5.6. ■

Theorem 4.5.10. Let $K_{1,n}$ ($n > 1$) be a star. If G satisfies the generalized p pebbling property then $f_{gl}(K_{1,n} \times G) \leq f_{gl}(K_{1,n})f_{gl}(G)$. Moreover if $f_{gl}(K_{1,n} \times G) = f_{gl}(K_{1,n})f_{gl}(G)$, then $K_{1,n} \times G$ has the generalizing p pebbling property.

Proof. By Theorem 4.2.6, the generalized pebbling number of $K_{1,n}$ is $f_{gl}(K_{1,n}) = (p - 1)n + (p^2 - 2p + 2)$ if $n > 1$ and $p \geq 2$. Let $V(K_{1,n}) = V_1 \cup V_2$ where $V_1 = \{u\}$ and $V_2 = \{w_1, w_2, \ldots, w_n\}$. We use induction on n to prove $f_{gl}(K_{1,n} \times G) \leq f_{gl}(K_{1,n})f_{gl}(G)$. For $n = 1$, $K_{1,2} \cong P_3$, a path on three vertices namely w_1, u and w_2. Therefore by Theorem 4.5.2,

$$f_{gl}(P_3 \times G) \leq f_{gl}(P_3)f_{gl}(G) = ((p - 1)n + (p^2 - 2p + 2))f_{gl}(G).$$

Let us assume $n > 2$. Let a_i, a_j be the number of pebbles and b_i, b_j be the number of occupied vertices in $\{u\} \times G$ and $\{w_i\} \times G$ for $i = 1, 2, \ldots, n$ respectively. Let $y \in G$.

Case 1: Let the target vertex be (u, y). Let us fix some $w_i \in V_2$.

Subcase 1.1: Assume $a_1 + a_2 + \cdots + a_{i-1} + a_{i+1} + \cdots + a_n + a < b_i$. Now

$$a_i = f_{gl}(K_{1,n})f_{gl}(G) - (a_1 + a_2 + \cdots + a_{i-1} + a_{i+1} + \cdots + a_n + a)$$

$$= f_{gl}(K_{1,n})f_{gl}(G) - b_i$$

$$> pf_{gl}(G) - b_i$$

So we can move p pebbles to (w_i, y) and hence one pebble can be moved to (u, y).
Subcase 1.2: Assume $a + a_1 + a_2 + \cdots + a_{i-1} + a_{i+1} + \cdots + a_n \geq b_i$.

By Lemma 4.2.12, we can transfer $\frac{a_i - (p-1)b_i}{p}$ pebbles to $\{u\} \times G$.

If $a_1 + a_2 + \cdots + a_{i-1} + a_{i+1} + \cdots + a_n + \frac{a_i - (p-1)b_i}{p} + a \geq f_{gl}(K_{1,n-1})$, then by induction a pebble can be moved to (u, y). The only distribution from which we cannot pebble the target satisfies the inequalities, $\frac{a_i - h_i}{p} \leq f_{gl}(G)$ and hence

\[
\frac{(p-1)a_i + (p-1)b_i}{p} < (p-1)f_{gl}(G) \tag{4.8}
\]

\[
a + a_1 + a_2 + \cdots + a_{i-1} + a_{i+1} + \cdots + a_n + \frac{a_i - (p-1)b_i}{p} < ((p-1)(n-1) + (p^2 - 2p + 2)) f_{gl}(G) \tag{4.9}
\]

But adding (4.8) and (4.9) we get

\[
a + a_1 + a_2 + \cdots + a_{i-1} + a_{i+1} + \cdots + a_n + a_i < ((p-1)n + (p^2 - 2p + 2)) f_{gl}(G).
\]

Thus any distribution of pebbles from which we may not place a pebble on (u, y) must begin with fewer than $((p-1)n + (p^2 - 2p + 2)) f_{gl}(G)$ pebbles.

Case 2: Let (w_j, y) be the target vertex for some $j = 1, 2, \ldots, n$. Without loss of generality, we assume that (w_n, y) is the target vertex. Let us name the subgraph obtained by deleting the vertices $w_1, w_2, \ldots, w_{n-1}$ as K' and hence $V(K') = \{u, w_n\}$. Again $K' \times G$ is isomorphic to $P_2 \times G$.

If $a + a_n \geq p f_{gl}(G)$, then by Theorem 4.5.2, one pebble can be moved to (w_n, y) Let us assume $a + a_n < p f_{gl}(G)$. Consider the following two cases.

Subcase 2.1: Assume $a + a_n < b_1 + b_2 + \cdots + b_{n-1}$. Consider

\[
a_1 + a_2 + \cdots + a_{n-1} = ((p-1)n + (p^2 - 2p + 2)) f_{gl}(G) - (a + a_n)
\]

\[
\geq ((p-1)n + (p^2 - 2p + 2)) f_{gl}(G) - (b_1 + b_2 + \cdots + b_n).
\]
Hence
\[
\sum_{k=1}^{n-1} (a_k + b_k) \geq ((p - 1)n + (p^2 - 2p + 2))\ f_gl(G)
\]
\[
\geq p^2\ f_gl(G) \quad \text{as } p \geq 2 \text{ and } n \geq 2.
\]

Then we could move at least \(p\ f_gl(G) \) pebbles to the vertices of \(K' \times G \) and we are done.

Subcase 2.2: Assume \(b_1 + b_2 + \cdots + b_{n-1} \leq a + a_n \).

We apply sequence of pebbling moves \(\left\{ \bigcup_{i=1}^{n-1} w_i \right\} \times G \), we could move at least
\[
\left\lfloor \frac{(a_1 + a_2 + \cdots + a_{n-1}) - (p-1)(b_1 + b_2 + \cdots + b_{n-1})}{p} \right\rfloor
\]
pebbles to the vertices of \(K' \times G \) then after pebbling, number of pebbles on \(K' \times G \) will be
\[
a + a_n + \left\lfloor \frac{\sum_{k=1}^{n-1} a_k - (p-1)\sum_{k=1}^{n-1} b_k}{p} \right\rfloor
\]
\[
= a + a_n + \frac{\sum_{k=1}^{n-1} a_k - (p-1)(a + a_n)}{p}
\]
\[
= a + a_1 + a_2 + \cdots + a_n
\]
\[
= \frac{(p-1)n + (p^2 - 2p + 2)}{p}\ f_gl(G)
\]
\[
\geq \frac{p^2}{p}\ f_gl(G).
\]

Hence a pebble can be moved to \((w_n, y)\) by Theorem 4.5.2. Hence the only distribution from which we cannot pebble the target satisfies the inequalities,
\[
\sum_{k=1}^{n-1} \frac{(a_k + b_k)}{p} < p\ f_gl(G)
\]
and hence
\[
\sum_{k=1}^{n-1} \frac{(p-1)(a_k + b_k)}{p} < p(p-1)\ f_gl(G) \quad (4.10)
\]
\[a + a_1 + a_2 + \cdots + a_n < p^2 f_{gl}(G) = ((p-1)n + (p^2 - 2p + 2)) f_{gl}(G). \]

Hence any distribution from which \((w_n, y)\) cannot be pebbled must have fewer than \(f_{gl}(K_{1,n}) f_{gl}(G)\) pebbles.

Now to prove the second part of the theorem we assume that \(f_{gl}(K_{1,n} \times G) = f_{gl}(K_{1,n}) f_{gl}(G)\). We want to prove that \(K_{1,n} \times G\) satisfies the generalized \(p\) pebbling property. Suppose \(n = 2\), \(K_{1,n} \cong P_3\). Then by Theorem 4.5.2 we are done. Assume the result is true when \(n' < n\). Suppose \(p f_{gl}(K_{1,n} \times G) - b + 1\) pebbles are distributed on the vertices of \(K_{1,n} \times G\).

Case 1: Let the target vertex be \((u, y)\). Let \(V(K_{1,n-1}) = \{u, w_1, w_2, \ldots, w_{n-1}\}\). Let \(a', a_n\) be the number of pebbles and \(b', b_n\) be number of occupied vertices in \(K_{1,n-1} \times G\) and \(\{w_n\} \times G\) respectively. Consider the following three cases.

Subcase 1.1: Suppose \(a' > p f_{gl}(K_{1,n-1} \times G) - b'\) by induction \(p\) pebbles can be moved to our target vertex.

Subcase 1.2: Assume \(f_{gl}(K_{1,n-1} \times G) \leq a' \leq p f_{gl}(K_{1,n} \times G) - b'\).

Since \(a' \geq f_{gl}(K_{1,n-1} \times G)\), by induction in \(K_{1,n-1} \times G\) one pebble can be moved to our target vertex. Since

\[a_n = a - a' \]

\[> p f_{gl}(K_{1,n} \times G) - b - a' \]

\[= p f_{gl}(K_{1,n} \times G) - b' - b_n - a' \]

\[= p f_{gl}(K_{1,n} \times G) - b' - b_n - p f_{gl}(K_{1,n-1} \times G) + b'. \]
Since $a' \leq p f_{gl}(K_{1,n-1} \times G) - b'$

$$= p(p-1)f_{gl}(G) - b_n.$$

Hence $p(p-1)$ pebbles can be moved to a vertex which is adjacent to (u,y) and hence $(p-1)$ pebbles can be moved to (u,y) and we are done.

Subcase 1.3: Assume $a' < f_{gl}(K_{1,n-1} \times G)$.

Then $a_n > p((p-1)n + (p^2 - 2p + 2))f_{gl}(G) - b - a'$

$$= p((p-1)(n-1) + (p^2 - 2p + 2))f_{gl}(G) + p(p-1)f_{gl}(G) - b' - b_n - a'$$

$$= (p^2 - p - 1)b_n + p((p-1)(n-1) + (p^2 - 2p + 2))f_{gl}(G) - b' - a',$$

since $b_n < f_{gl}(G)$.

Hence $f_{gl}(K_{1,n-1})f_{gl}(G) - \left\lceil \frac{b' + a'}{p} \right\rceil$ pebbles can be moved to $K_{1,n-1} \times G$ leaving more than $p(p-1)f_{gl}(G) - b_n$ pebbles in $\{w_n\} \times G$.

In $K_{1,n-1} \times G$, there are

$$a' + f_{gl}(K_{1,n-1})f_{gl}(G) - \left\lceil \frac{b' + a'}{p} \right\rceil = f_{gl}(K_{1,n-1})f_{gl}(G) + \left\lceil \frac{a' (p-1) - b'}{p} \right\rceil$$

$$\geq f_{gl}(K_{1,n-1})f_{gl}(G)$$

pebbles.

We can then move one pebble to a target vertex (u,y) in $K_{1,n-1} \times G$ and at the same time we can move $p(p-1)$ pebbles to a vertex which is adjacent to (u,y) in $\{w_n\} \times G$, which will result in $(p-1)$ additional pebbles to a target vertex.

Case 2: Let the target vertex be (w_i,y) for some $i = 1,2,\ldots,n$. Without loss of generality, let the target vertex be (w_n,y). Let $a, a_i (i = 1,2,\ldots,n)$ be the number of pebbles and $b, b_i (i = 1,2,\ldots,n)$ be the number of occupied vertices in $\{u\} \times G$ and $\{w_i\} \times G (i = 1,2,\ldots,n)$ respectively and

$$b_0 = b + b_1 + b_2 + \cdots + b_n.$$
Suppose \(a + a_n > p f_{gl}(G) - (b + b_n) \). Then we are done by Theorem 4.5.2.

Assume \(a + a_n \leq p f_{gl}(G) - (b + b_n) \). Then

\[
\sum_{k=1}^{n-1} a_k > p((p - 1)n + (p^2 - 2p + 2)) f_{gl}(G) - b_0 - (a + a_n)
\]
\[
= p((p - 1)n + (p^2 - 2p + 2)) f_{gl}(G) - b - b_1 - b_2 - \cdots - b_n - (a + a_n)
\]
\[
= p((p - 1)n + (p^2 - 2p + 2)) f_{gl}(G) - (b + a) - (b_n + a_n) - \sum_{k=1}^{n-1} b_k
\]
\[
\sum_{k=1}^{n-1} (a_k + b_k) > p((p - 1)n + (p^2 - 2p + 2)) f_{gl}(G) - (b + a) - (b_n + a_n).
\]

Hence \((p - 1)n + (p^2 - 2p + 2)) f_{gl}(G) - \left\lceil \frac{b + a}{p} \right\rceil - \left\lceil \frac{b_n + a_n}{p} \right\rceil\) pebbles can be moved to \(P_2 \times G \) where \(V(P_2) = \{u, w_n\} \).

Hence in \(\{u, w_n\} \times G \), there are

\[
a + a_n + ((p - 1)n + (p^2 - 2p + 2)) f_{gl}(G) - \left\lceil \frac{a + b}{p} \right\rceil - \left\lceil \frac{b_n + a_n}{p} \right\rceil
\]
\[
= ((p - 1)n + (p^2 - 2p + 2)) f_{gl}(G) + \left\lfloor \frac{(p - 1)a_0 - b_0}{p} \right\rfloor + \left\lfloor \frac{(p - 1)a_n - b_n}{p} \right\rfloor
\]
\[
\geq p f_{gl}(G)\) pebbles since \(p \geq 2, n \geq 3 \).

We can then move \(p \) pebbles to \((w_n, y)\) and we are done.

Corollary 4.5.11. Let \(K_{1,n} (n > 1) \) be a star and let \(K_m \) be a complete graph. Then \(f_{gl}(K_{1,n} \times K_m) \leq f_{gl}(K_{1,n}) f_{gl}(K_m) \).

Proof. The Corollary follows from Theorem 4.4.6 and Theorem 4.5.10.

Corollary 4.5.12. Let \(K_{1,n} (n > 1) \) and let \(K_{1,m} (m > 1) \) be any two stars. Then \(f_{gl}(K_{1,n} \times K_{1,m}) \leq f_{gl}(K_{1,n}) f_{gl}(K_{1,m}) \).

Proof. The Corollary follows from Theorem 4.4.9 and Theorem 4.5.10.
Corollary 4.5.13. Let $K_{1,n}$ ($n > 1$) and C_m ($m \geq 3$) be a cycle on m vertices. Then
$f_{gl}(K_{1,n} \times C_m) \leq f_{gl}(K_{1,n})f_{gl}(C_m)$.

Proof. The Corollary follows from Theorem 4.4.8 and Theorem 4.5.10.

Theorem 4.5.14. Let $K_{2,2}$ be a bipartite graph and G be a graph with the generalized p pebbling property. Then
$f_{gl}(K_{2,2} \times G) \leq f_{gl}(K_{2,2})f_{gl}(G)$.

i.e., $f_{gl}(K_{2,2} \times G) \leq p^2f_{gl}(G)$ since $f_{gl}(K_{2,2}) = p^2$.

Proof. Let $V(K_{2,2}) = V_1 \cup V_2$ where $V_1 = \{u_1, u_2\}$ and $V_2 = \{u_3, u_4\}$. Let $y \in G$.

Without loss of generality we assume the target vertex on $K_{2,2} \times G$ is (u_1, y). Let a_i denote the number of pebbles on $\{u_i\} \times G$ with b_i occupied vertices. Suppose we start with a configuration of $p^2f_{gl}(G)$ pebbles.

Suppose $a_1 + a_3 > pf_{gl}(G)$. Then we are done by Theorem 4.5.2. Assume $a_1 + a_3 \leq pf_{gl}(G)$. Let $a_1 + a_3 = pf_{gl}(G) - x$ for some integer x. Then $a_2 + a_4 = (p^2 - p)f_{gl}(G) + x$. If $f_{gl}(P_2 \times G) = pf_{gl}(G)$ and G has the generalized p pebbling property then $P_2 \times G$ has the generalized p pebbling property. So we may assume

$$x \leq pf_{gl}(G) - (b_2 + b_4). \quad (4.12)$$

Otherwise we could move p pebbles to a vertex in $\{u_2, u_4\} \times G$ which is adjacent to (u_1, y). And a pebble can be moved to (u_1, y). From Eq. (4.5), it follows that

$$b_2 + b_4 \leq pf_{gl}(G) - x \quad (4.13)$$

Now we will move as many pebbles as possible from $\{u_2, u_4\} \times G$ to $\{u_1, u_3\} \times G$.

We can move at least

$$\frac{(p^2 - p)f_{gl}(G) + x - b_2 - b_4}{p}$$
\[\geq \frac{(p^2 - p)f_{gl}(G) + x - (p - 1)pf_{gl}(G) + (p - 1)x}{p} \] (from (4.13))

\[= \frac{px}{p} = x \] pebbles to \(\{u_1, u_3\} \times G \),

yielding \(pf_{gl}(G) \) pebbles on \(\{u_1, u_3\} \times G \). Then we can move a pebble to \((u_1, y)\) and we are done.

\[\text{Theorem 4.5.15.} \] Let \(K_{s_1, 2} \) be a bipartite graph with \(s_1 \geq 2 \) and \(G \) be a graph with the generalized \(p \) pebbling property. Then

\[f_{gl}(K_{s_1, 2} \times G) \leq f_{gl}(K_{s_1, 2}) f_{gl}(G), \]

i.e., \(f_{gl}(K_{s_1, 2} \times G) \leq (p^2 + (p - 1)(s_1 - 2))f_{gl}(G) \) as \(p \geq n - s_1 \),

\[f_{gl}(K_{s_1, 2} \times G) \leq (p + (p - 1)(n - 2))f_{gl}(G) \] as \(p \leq n - s_1 \).

Proof. We use induction on \(s_1 \) to prove the result. The result is true for \(s_1 = 2 \) by Theorem 4.5.14. We assume \(s_1 > 2 \). Let \(V(K_{s_1, 2}) = V_1 \cup V_2 \) where \(V_1 = \{v_1, v_2, \ldots, v_{s_1}\} \) and \(V_2 = \{u_1, u_2\} \). Let \(a_{1j} \) be the number of pebbles on \(\{v_j\} \times G \) with \(b_{1j} \) occupied vertices and \(a_{2i} \) be the number of pebbles on \(\{u_i\} \times G \) with \(b_{2i} \) occupied vertices. Let \(y \in G \). Suppose we start with a configuration of \((p^2 + (p - 1)(s_1 - 2))f_{gl}(G) \) pebbles on \((K_{s_1, 2} \times G) \).

Case 1: Suppose the target vertex is \((u_i, y)\) for some \(i = 1, 2 \).

Without loss of generality, we assume the target vertex is \((u_1, y)\). Let us choose \(v_j \in V_1 \) for some \(j = 1, 2, \ldots, s_1 \). Since \(G \) satisfies the generalized \(p \) pebbling property if \(\frac{a_{1j} + b_{1j}}{p} > f_{gl}(G) \) then \(p \) pebbles can be placed on \((v_j, y)\) and hence a pebble can be moved to \((u_1, y)\). Otherwise by Lemma 4.2.12 we transfer \(\frac{a_{1j} - (p - 1)b_{1j}}{p} \) pebbles to the vertices of \(\{u_1\} \times G \).
If \(\left(\sum_{k
eq j} a_{1k} \right) + a_{21} + a_{22} + \frac{a_j - (p-1)b_{1j}}{p} \geq (p^2 + (p-1)(s_1 - 3)) f_{gl}(G) \) then by induction the result follows, since \(\{K_{s_1,2} - v_j\} \times G \) is isomorphic to \(K_{s_1-1,2} \times G \).

The only distribution from which we cannot pebble the target satisfies the inequalities

\[
\frac{(p-1)a_{1j} + (p-1)b_{1j}}{p} \leq (p-1)f_{gl}(G)
\]

(4.14)

\[
\left(\sum_{k
eq j} a_{1k} \right) + a_{21} + a_{22} + \frac{a_j - (p-1)b_{1j}}{p} < (p^2 + (p-1)(s_1 - 3)) f_{gl}(G)
\]

(4.15)

Adding these together gives \(\sum_{k=1}^{s_1} a_{1k} + a_{21} + a_{22} < (p^2 + (p-1)(s_1 - 2)) f_{gl}(G) \).

Thus the initial distribution has lesser than \((p^2 + (p-1)(s_1 - 2)) f_{gl}(G) \) pebbles.

Case 2: Suppose the target vertex is \((v_{s_1}, y)\). Suppose \(a_{1s_1} + a_{21} \geq p f_{gl}(G) \), then a pebble can be moved to \((v_{s_1}, y)\) by Theorem 4.5.2.

Let us assume \(a_{1s_1} + a_{21} < p f_{gl}(G) \). Then for some integer \(x \), \(a_{1s_1} + a_{21} = p f_{gl}(G) - x \) and \(\sum_{k=1}^{s_1-1} a_k + a_{22} = ((p-1)(s_1 - 2) + (p^2 - 3p + 2)) f_{gl}(G) + x \).

Assume \(x \leq p f_{gl}(G) - \left(\sum_{k=1}^{s_1-1} b_{1k} + b_{22} \right) \). Otherwise

\[
\sum_{k=1}^{s_1-1} a_{1k} + a_{22} > p^2 f_{gl}(G) - \sum_{k=1}^{s_1-1} (b_{1k} + b_{22})
\]

then by Theorem 4.5.10, \(p f_{gl}(G) \) pebbles can be moved to \(\{v_{s_1}, u_2\} \times G \) and we are done.

Hence \(\sum_{k=1}^{s_1-1} b_{1k} + b_{22} \leq p f_{gl}(G) - x \).

Hence we could move at least \(\frac{(p-1)(s_1-2)+(p^2-3p+2)) f_{gl}(G)+x-(\sum_{k=1}^{s_1-1} (b_{1k}+b_{22}))}{p} \)

pebbles to \(\{v_{s_1}, v_{21}\} \times G \) from \(K_{s_1-1,1} \times G \) which is isomorphic to \(\{v_1, v_2, \ldots, v_{s_1-1}, u_1\} \times G \).
i.e., we could move at least
\[
\frac{((p-1)(s_1-2) + (p^2 - 3p + 2)) f_{gl}(G) + x - p(p-1)f_{gl}(G) + (p-1)x}{p}
\]

\[
\geq x + \frac{(p-1)(s_1-4)}{p} f_{gl}(G),
\]
x pebbles to \(v_{s_1}, u_2\) while leaving \(\frac{(p-1)(s_1-4)}{p} f_{gl}(G)\) pebbles on \(\{v_1, v_2, \ldots, v_{s_1-1}, u_1\} \times G\). Hence we are done.

For \(p \leq n - s_1\), the proof is similar to the above cases.

\[\square\]

Theorem 4.5.16. Let \(G\) be a graph with the generalized \(p\) pebbling property. Then
\[
f_{gl}(K_{s_1,s_2,\ldots,s_r}^*\times G) \leq f_{gl}(K_{s_1,s_2,\ldots,s_r}) f_{gl}(G).
\]

Proof. We prove the theorem by induction on \(n\). Suppose we start with a configuration of \((p^2 + (p-1)(s_1-2)) f_{gl}(G)\) pebbles if \(p \geq n - s_1\) and \((p + (p-1)(n-2)) f_{gl}(G)\) pebbles if \(p \leq n - s_1\) on \(K_{s_1,s_2,\ldots,s_r}^*\times G\). By Theorem 4.5.15 the result is true when \(r = 2\) and \(s_2 = 2\). Therefore we assume \(r \geq 2\) and \(s_2 > 2\) if \(r = 2\).

Let \(\{v_{i_1}, v_{i_2}, \ldots, v_{i_{s_1}}\}\) be the vertices of \(C_i\) for \(i = 1, 2, \ldots, r\). Let \(a_{i_j}\) denote the number of pebbles on \(\{v_{i_j}\} \times G\) with \(b_{i_k}\) occupied vertices. Let \(y \in G\) and \((v_{i_j}, y)\) be the target vertex.

Case 1: Assume \(2 \leq p \leq n - s_1\). Suppose \(a_{i_j} \geq f_{gl}(G)\). Then one pebble can be moved to \((v_{i_j}, y)\). Let us assume \(a_{i_j} < f_{gl}(G)\).

Suppose there exists some \(v_{lm} \in K_{s_1,s_2,\ldots,s_r}^*\) such that \(v_{lm} \neq v_{i_j}\) and
\[
\left(\sum_{w=1}^{r} \left(\sum_{k=1}^{s_w} a_{wk} \right) - a_{lm} \right) < b_{lm}.
\]

Then \(a_{lm} = \sum_{w=1}^{r} \left(\sum_{k=1}^{s_w} a_{wk} \right) - \left(\sum_{w=1}^{r} \left(\sum_{k=1}^{s_w} a_{wk} \right) - a_{lm} \right)\)

\[
= (p + (p-1)(n-2)) f_{gl}(G) - b_{lm}
\]
Since \(\{v_{lm}\} \times G \) is isomorphic to \(G \) and it satisfies the generalized \(p \) pebbling property then we can move \(p \) pebbles to \((v_{lm}, y)\) and hence a pebble can be moved to \((v_{ij}, y)\). Suppose \(b_{lm} \leq \left(\sum_{w=1}^{r} \left(\sum_{k=1}^{s_w} a_{wk} \right) \right) - a_{lm} \).

By Lemma 4.2.12 we can transfer \(a_{lm} \) pebbles to \((K^*_{s_1, s_2, \ldots, s_r} - \{v_{lm}\}) \times G\) which is \((K^*_{s_1, s_2, \ldots, s_r-1, \ldots, s_r}) \times G\).

Therefore if \(\sum_{w=1}^{r} \left(\sum_{k=1}^{s_w} a_{wk} \right) - a_{lm} + \frac{a_{lm}-(p-1)b_{lm}}{p} \geq (p + (p-1)(n-3)) f_{gl}(G) \) pebbles, a pebble can be moved to \((v_{ij}, y)\) by induction. If we cannot pebble the target, the following inequalities are satisfied.

\[
\frac{a_{lm} + b_{lm}}{p} < f_{gl}(G) \tag{4.16}
\]

\[
\frac{(p-1)a_{lm} + (p-1)b_{lm}}{p} < (p-1)f_{gl}(G) \tag{4.17}
\]

But adding (4.16) and (4.17) we have

\[
\sum_{w=1}^{r} \left(\sum_{k=1}^{s_w} a_{wk} \right) - a_{lm} + \frac{a_{lm}-(p-1)b_{lm}}{p} \geq (p + (p-1)(n-3)) f_{gl}(G)
\]

Thus the original configuration has fewer than \((p + (p-1)(n-2)) f_{gl}(G)\) pebbles.

Case 2: Assume \(p \geq n - s_1 \).

The proof is similar to Case 1 and so the proof is omitted. \(\blacksquare\)
Corollary 4.5.17. Let P_m be a path on m vertices. Then

$$f_{gl}(K_{s_1,s_2,\ldots,s_r} \times P_m) \leq f_{gl}(K_{s_1,s_2,\ldots,s_r}) f_{gl}(P_m).$$

Proof. The Corollary follows from Theorem 4.4.4 and Theorem 4.5.16.

Corollary 4.5.18. Let K_n be a complete graph on n vertices. Then

$$f_{gl}(K_{s_1,s_2,\ldots,s_r} \times K_n) \leq f_{gl}(K_{s_1,s_2,\ldots,s_r}) f_{gl}(K_n).$$

Proof. The Corollary follows from Theorem 4.4.6 and Theorem 4.5.16.

Corollary 4.5.19. Let $K_{1,n} (n > 1)$ be a star. Then

$$f_{gl}(K_{s_1,s_2,\ldots,s_r} \times K_{1,n}) \leq f_{gl}(K_{s_1,s_2,\ldots,s_r}) f_{gl}(K_{1,n}).$$

Proof. The Corollary follows from Theorem 4.4.9 and Theorem 4.5.16.

Corollary 4.5.20. Let $C_n (n \geq 3)$ be a cycle on n vertices. Then

$$f_{gl}(K_{s_1,s_2,\ldots,s_r} \times C_n) \leq f_{gl}(K_{s_1,s_2,\ldots,s_r}) f_{gl}(C_n).$$

Proof. The Corollary follows from Theorem 4.4.8 and Theorem 4.5.16.