List of Figures

1.1 Area of research problem .. 12

2.1 Sleep scheduling schemes: (a) Always ON, (b) Rotational, (c) Greedy, (d) Event triggered wakeup .. 23

2.2 Power consumption and idle periods of a processor (a) without DVFS, (b) with DVFS ... 26

2.3 DMS concept ... 28

3.1 Basic blocks of a sensor node ... 36

3.2 ON period divided in to slots ... 37

3.3 Wireless sensor node having DVFS and DMS without coordination 38

3.4 Coordinated power management concept as given in [138] 39

3.5 Concept of CAP management on Wireless Sensor Node 41

4.1 Tandem queue model of Wireless Sensor Node 44

4.2 Sensor node model with DVFS and DMS 51

4.3 Input and output buffer lengths during time slots 1 to 100 53

4.4 Input and output buffer lengths during time slots 170 to 270 53
4.5 Coordinating DVFS and DMS 54
4.6 Buffer overflow probabilities during catastrophe 58
4.7 Buffer overflow probabilities during normal period 59
4.8 Average idle time probabilities 59
4.9 Comparison between fixed service rate and variable service rate sensor node in normal time period 61
4.10 Comparison between fixed service rate and variable service rate sensor node in catastrophe period 61
4.11 Various threshold policies 64
4.12 Comparison of a sensor node using fixed threshold policy and adaptive threshold policy 65
5.1 Late arrival system 68
5.2 Coordinated Rate Adaptive model of Wireless Sensor Node 68
5.3 Flowchart for a two service rate capability sensor node 70
5.4 Markov chain model of a rate adaptive wireless sensor node 72
6.1 Components of GSPN 83
6.2 Wireless Sensor Node with fixed service rate 84
6.3 Wireless Sensor Node with only DVFS 88
6.4 Wireless Sensor Node with only DMS 89
6.5 Wireless Sensor Node with coordinated DVFS and DMS 90
6.6 Wireless Sensor Node with fixed battery capacity and fixed service rate 91
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.7</td>
<td>Wireless Sensor Node with fixed battery capacity and multiple service rates</td>
<td>91</td>
</tr>
<tr>
<td>6.8</td>
<td>Performance of a sensor node with only DVFS and only DMS</td>
<td>98</td>
</tr>
<tr>
<td>6.9</td>
<td>Performance of a sensor node with fixed service rate</td>
<td>100</td>
</tr>
<tr>
<td>6.10</td>
<td>Performance of a sensor node with multiple service rates</td>
<td>101</td>
</tr>
<tr>
<td>6.11</td>
<td>Comparison between fixed service rate and multiple service rates</td>
<td>102</td>
</tr>
<tr>
<td>6.12</td>
<td>Comparison between fixed service rate and multiple service rates for (a) buffer overflow prob. and (b) lifetime</td>
<td>102</td>
</tr>
<tr>
<td>7.1</td>
<td>Current consumption of microcontroller in ATmega128RFA1 [162]</td>
<td>104</td>
</tr>
<tr>
<td>7.2</td>
<td>Clock frequency switching from 8 MHz to 1 MHz</td>
<td>105</td>
</tr>
<tr>
<td>7.3</td>
<td>Clock frequency switching from 1 MHz to 8 MHz</td>
<td>106</td>
</tr>
<tr>
<td>7.4</td>
<td>Current consumption of radio transceiver in ATmega128RFA1 [162]</td>
<td>111</td>
</tr>
</tbody>
</table>