REFERENCES

2. EN 15663, Railway Application, NederlandsNormalisatie Institute, 2007
3. A Kapoor, D I Fletcher, F J Franklin, G. Vasic, and L. Smith, Rail - Wheel Contact Research at University of Newcastle, School of Mechanical and system Engineering, Stephenson Building, Claremont Road, Newcastle upon Tyne, UK, 2005
4. A Kapoor, D I Fletcher, F. Franklin, Management and Understanding of Rolling Contact Fatigue, Rail Safety Board, 2005
5. Anders Ekberg, ElenKabo, Fatigue of Railway wheels and rails under loading contact and thermal loading an overview, Science Direct, wear 258, 1288-13, 2005
8. D.J. Buttle, W. Dalazell and P.J. Thayer, Early Warnings of the onset of rolling contact fatigue by inspecting the residual stress environment of the railhead. Insight, 46(6), 344-348, 2004
12. J. Seabra and D. Berthe, Influence of surface Waviness and Roughness on the Normal Pressure Distribution in the Hertzian Contact, Trans of the ASME, 109, 462
13. J.W. Ringsberg and T. Lindback, Rolling Contact Fatigue Analysis of Rails including Numerical Simulations of the Rail Manufacturing Process and
15. AddisuNegas, Analysis of Wheel and Rail Contact Geometry, Addish Abba University, 2012
17. TumnaJhon, A review of Wheel Wear and Rolling Contact Fatigue, Rail Technology Unit of Manchester Metropolitan University, 2006
18. Kamleshkumar Jain, R. Murthy, Southen Railway, Improvements in rail steel Metallurgy for 32.5 T Axle Load, South Railway, 2005
19. RS Lucchini, Wheel set integrated design and effective maintenance, Global Change and Ecosystem, 2005
20. KrsteCvetkovski, Johan Alhstrom and BirgerKarlsson, Wheel material with improves resistance against thermal damage, Department of Materials and Manufacturing Technology, 2010
23. Innotrack, Calculation of Contact Stress, Intigrated Project on Sustainable Development, Globle Change and Ecosystems,2009
25. WYan and F D Fischer, Applicability of the Hertz Contact Theory to rail-wheel contact problems, Archive of Applied Mechanics, 70, 255-268, 2000


31. Cao Changyong, Zhong Yang, Li Mingliang, Dynamic Analysis of Bernoulli Euler Beam on Two – Parameter Foundation Subject to Moving Harmonic Load, Dalian University of Technology, Dalian, China, 2011


34. Sharad Kumar Agrawal, Dr. G. Narayan, Prof. C Sujatha, Rail Wheel Interaction An Investigation, Department of Mechanical Engineering, Indian Institute of Technology, Madras, Chennai


37. A Brief of MSC. ADAMS, University of Michigan, Ann Arbor, MI, USA, 2002, http://www.mecheng.iisc.ernet.in


40. C Vallellano, A Navarro and J Dominguez, Fatigue crack growth threshold conditions for small notches, Department of Mechanical Engineering, University de Sevilla, Spain, 2001


42. Zofia Kowalska, Vibro-Impact induced by irregular rolling surfaces of railway rails and wheels, Journal of Theoretical and Applied Mechanics, 46. 205-221, 2008
46. S Kaewunruen and A M Remennikov, State dependent Properties of rail pads, Faculty of Engineering and Information Sciences, University of Wollongong, 2009