CHAPTER 1

Table 1.1 List of various inorganic ion-exchange materials based on Tin(IV) and Antimony(V) prepared so far and their salient features 39

CHAPTER 2

Table 2.1 Conditions of preparation of various samples of polyaniline Sn(IV) tungstoarsenate composite cation-exchange material 179

Table 2.2 Conditions of preparation of various samples of polypyrrole polyantimonic composite cation-exchange material 181

Table 2.3 The solubility of polyaniline Sn(IV) tungstoarsenate in various solvent systems 183

Table 2.4 The solubility of polypyrrole polyantimonic acid composite in various solvent systems 184

Table 2.5 Thermal stability of polyaniline Sn(IV) tungstoarsenate (S-1) and polypyrrole polyantimonic acid (A-2) after heating to various temperatures for 1 h 187

Table 2.6 Percent composition of polyaniline Sn(IV) tungstoarsenate (S-1) and polypyrrole polyantimonic acid (A-2) composite cation exchanger 187

Table 2.7 X-ray diffraction data of polyaniline Sn(IV) tungstoarsenate composite material 199

Table 2.8 X-ray diffraction data of polypyrrole polyantimonic acid composite material 199

Table 2.9 ESR data of polyaniline Sn(IV) tungstoarsenate (S-1) and polypyrrole polyantimonic acid (A-2) composite cation-exchange materials at room temperature 202

Table 2.10 FT-IR peaks positions (cm⁻¹) of polyaniline, Sn(IV) tungstoarsenate and polyaniline Sn(IV) tungstoarsenate (S-1) 206

Table 2.11 FT-IR peak positions (cm⁻¹) of different forms of polyaniline Sn(IV) tungstoarsenate (S-1) composite cation-exchanger 206

Table 2.12 FT-IR peak positions (cm⁻¹) of polypyrrole, polyantimonic acid and polypyrrole polyantimonic acid (A-2) 208
## CHAPTER 3

<table>
<thead>
<tr>
<th>Table 3.1</th>
<th>Preparation and ion-exchange capacity of various samples of polyaniline Sn(IV) tungstoarsenate composite cation-exchange material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 3.2</td>
<td>Preparation and ion-exchange capacity of various samples of polypyrrole polyantimonic acid composite cation-exchange material</td>
</tr>
<tr>
<td>Table 3.3</td>
<td>Ion-exchange capacity of various exchanging ions on polyaniline Sn(IV) tungstoarsenate and polypyrrole polyantimonic acid composite cation-exchangers</td>
</tr>
<tr>
<td>Table 3.4</td>
<td>Effect of eluant concentration on ion-exchange capacity of polyaniline Sn(IV) tungstoarsenate and polypyrrole polyantimonic acid composite cation-exchangers</td>
</tr>
<tr>
<td>Table 3.5</td>
<td>Effect of temperature on ion-exchange capacity (i.e.c.) of polyaniline Sn(IV) tungstoarsenate and polypyrrole polyantimonic acid composite cation-exchangers on heating time for one hour</td>
</tr>
<tr>
<td>Table 3.6</td>
<td>$\tau$-values for $M^{2+}$-$H^{+}$ exchanges on polyaniline Sn(IV) tungstoarsenate and polypyrrole polyantimonic acid composite cation-exchangers at different temperatures after various time intervals</td>
</tr>
<tr>
<td>Table 3.7</td>
<td>Comparison of the preparation and properties of polyaniline Sn(IV) tungstoarsenate with those of other cation-exchangers</td>
</tr>
<tr>
<td>Table 3.8</td>
<td>Comparison of the preparation and properties of polypyrrole polyantimonic acid with those of other cation-exchangers</td>
</tr>
<tr>
<td>Table 3.9</td>
<td>$K_d$-values of some metal ions on polyaniline Sn(IV) tungstoarsenate (S-1) column in different solvent systems</td>
</tr>
<tr>
<td>Table 3.10</td>
<td>$K_d$-values of some metal ions on polypyrrole polyantimonic acid (A-2) column in different solvent systems</td>
</tr>
<tr>
<td>Table 3.11</td>
<td>Separation factors of different metal ions on polyaniline Sn(IV) tungstoarsenate composite cation-exchange material</td>
</tr>
<tr>
<td>Table 3.12</td>
<td>Separation factors of different metal ions on polypyrrole polyantimonic acid composite cation-exchange material</td>
</tr>
<tr>
<td>Table 3.13</td>
<td>Slopes of various $\tau$ versus time ($t$) plots on polyaniline Sn(IV) tungstoarsenate and polypyrrole polyantimonic acid composite cation-exchangers at different temperatures</td>
</tr>
</tbody>
</table>
Table 3.14 Values of $D_o$, $E_a$ and $\Delta S^*$ for the exchange of H(I) with some metal ions on polyaniline Sn(IV) tungstoarsenate and polypyrrole polyantimonic acid composite cation-exchangers

CHAPTER 4

Table 4.1 Preparation of various samples of polyaniline Sn(IV) tungstoarsenate composite material with fixed volume of inorganic precipitates

Table 4.2 Preparation of various samples of polypyrrole polyantimonic acid composite material with fixed volume of inorganic precipitates

Table 4.3 Temperature dependence of DC electrical conductivity of polyaniline Sn(IV) tungstoarsenate (PS-5) and polypyrrole polyantimonic acid (PA-10) composites

Table 4.4 Four-probe DC electrical conductivity of different forms of polyaniline Sn(IV) tungstoarsenate and polypyrrole polyantimonic acid composite systems at ambient temperature (prepared with 10% aniline and 33.33% pyrrole monomers, respectively)

Table 4.5 Values of DC electrical conductivity for the polyaniline and polyaniline Sn(IV) tungstoarsenate composites with different concentrations of aniline monomer

Table 4.6 Values of DC electrical conductivity for the polypyrrole and polypyrrole polyantimonic acid composites with different concentrations of pyrrole monomer

CHAPTER 5

Table 5.1 Effect of pH on electrode response of Cd$^{2+}$ ion-selective polyaniline Sn(IV) tungstoarsenate and Hg$^{2+}$ ion-selective polypyrrole polyantimonic acid membrane electrodes

Table 5.2 Response of Cd$^{2+}$ ion-selective polyaniline Sn(IV) tungstoarsenate and Hg$^{2+}$ ion-selective polypyrrole polyantimonic acid membrane electrodes at different time interval

Table 5.3 Characterization of ion-exchanger membranes

Table 5.4 Effect of non-aqueous solvents on calibration curve of Cd$^{2+}$-selective polyaniline Sn(IV) tungstoarsenate-araldite membrane electrode
Table 5.5  Effect of surfactant on calibration curve of Cd$^{2+}$-selective polyaniline Sn(IV) tungstoarsenate-araldite membrane electrode

Table 5.6  Selectivity coefficient values ($K^d_{Cd,M}$) for Cd$^{2+}$-selective polyaniline Sn(IV) tungstoarsenate-araldite membrane electrode membrane electrode for cadmium ions

Table 5.7  Effect of non-aqueous solvents on calibration curve of Hg$^{2+}$-selective polypyrrole polyantimonic acid-PVC membrane electrode

Table 5.8  Effect of surfactant on calibration curve of Hg$^{2+}$-selective polypyrrole polyantimonic acid-PVC membrane electrode

Table 5.9  Selectivity coefficient values ($K^d_{Hg,M}$) for Hg$^{2+}$-selective polypyrrole polyantimonic acid-PVC membrane electrode for mercury ions

Table 5.10  Composition and performance characteristics of Cd(II) and Hg(II) ion-selective electrodes

CHAPTER 6

Table 6.1  Some binary separations of metal ions achieved on polyaniline Sn(IV) tungstoarsenate column

Table 6.2  Some binary separations of metal ions achieved on polypyrrole polyantimonic acid column

Table 6.3  Removal of Cd$^{2+}$ from water samples using polyaniline Sn(IV) tungstoarsenate column

Table 6.4  Removal of Hg$^{2+}$ from water samples using polypyrrole polyantimonic acid column

Table 6.5  Separation of Zn$^{2+}$ and Fe$^{3+}$ present in two pharmaceutical preparations on the composite cation-exchanger columns (S-1 and A-2)

Table 6.6  Freundlich isotherm constants $K$ and $1/n$ for the adsorption of on polyaniline Sn(IV) tungstoarsenate cation-exchanger

Table 6.7  Values of various thermodynamic parameters for the adsorption of on polyaniline Sn(IV) tungstoarsenate composite cation-exchanger

Table 6.8  Analytical application of polyaniline Sn(IV) tungstoarsenate membrane electrode for the determination of cadmium in wastewater samples

Table 6.9  Determination of mercury in spiked wastewater samples using the polypyrrole polyantimonic acid membrane electrode

Table 6.10  Determination of mercury in some amalgam alloys using the proposed polypyrrole polyantimonic acid membrane electrode