The performance of the Round Robin Scheduling Algorithm relies on the size of the time quantum. At one extreme, if the time quantum is extremely large, cause less response time and it is similar to FCFS. If the time quantum is extremely small this causes too many context switches and lowers the CPU efficiency. In this research I present a solution to the disadvantages of Round Robin Scheduling Algorithm by make the operating systems adjusting the process according to the burst time of the prevailed set of processes in the FIFO queue based on priority.

4.2 Drawbacks of Round Robin Scheduling Algorithm

Round Robin Scheduling Algorithm has many disadvantages are as following:

A. Higher Average Waiting Time
In round robin architecture the process spends the time in the ready queue for the waiting of processor for implementation is known as waiting time and the time the process completes. So, completing the process Round Robin Scheduling Algorithm produces higher average waiting time which is the main disadvantage.

B. Low Throughput

Throughput is explained as number of process completed per time unit. If round robin is executed in circular way then more context switches occur so throughput will be low which leads to overall degradation of system performance. If the various context switches is low then the throughput will be high. Context switch and throughput are inversely proportional to each other.

C. Context Switch

When the time slice of the task finishes and the task is still executing on the processor the scheduler forcibly preempts the tasks on the processor and stores the task context in stack or registers and allots the processor to the next task in the ready queue. First of all the processor save the state of process and implements next running process. When process implement completely the processor continue execution of resumed process. This action which is performed by the scheduler is known as context switch. Context switch leads to the wastage of time, memory and leads to scheduler overhead.

D. High Response Time

Response time is the time from the submission of a request to the processor until the first response is made that means when the task is submitted until the first response is received. In general the round robin made larger response time which is the drawback because system performance will be degraded. For the achieving high performance the response time will be small.

E. Very High Turnaround Time

Turnaround time mentions to the total time between submission of a process and its completion Round Robin scheduling algorithm also makes higher turnaround time which is also drawback. For improving system performance we attaines lower turnaround time.
4.3 Adaptive Round Robin Scheduling Algorithms

4.3.1 Introduction to Adaptive RR

The Adaptive Round Robin (ARR) Scheduling Algorithm focuses on the demerits of Simple Round Robin Algorithm which gives equal portion of time to all the processes (processes are scheduled in first come first serve manner) because of all the demerits in round robin algorithm is not efficient for processes with smaller CPU burst. This result shows to the increase in waiting time and response time of processes which decrease the system throughput. The Adaptive RR algorithm suspends the drawbacks of a simple round robin algorithm in by scheduling of processes based on the CPU execution time. The allotted processor used to reduce the burden of the main processor is assigned processes according to the priority basis; the smaller CPU burst of the process, higher the priority. The Adaptive RR Scheduling Algorithm resolves the problem of higher average waiting time, turnaround time, and more context switches thereby improving the system performance. The throughput mainly relies on the number of context switches; if context switches decreased then throughput automatically improve.

4.3.2 Smart Time Slice for Adaptive RR

The Adaptive RR algorithm suspends the defects of Simple Round Robin (RR) Scheduling Algorithm in Operating System by introducing a concept known as smart time slice which depends on three aspects they are priority, average CPU burst or mid process CPU burst, and context switch avoidance time. The Adaptive RR Scheduling algorithm permits the user is to assign priority to the system based on execution time or burst time. The calculated smart time slice will be founded on all CPU burst of new running processes. The smart time slice calculated according to the processes burst time; if the number of process are allotted into the ready queue are in odd manner the smart time slice will be the mid process burst time else the number of processes are even in ready queue the smart time slice is average of all processes burst time is allotted to the processes.

Smart Time Slice = Mid Process Burst Time (If number of processes are odd
Proposed Algorithm

OR

Smart Time Slice = Average Burst Time (If number of processes are even)

Then processes are implementing according to the smart time slice and give superior result comparison to existing Simple Round Robin Scheduling Algorithm and can be executed in operating system.

Figure 4-2 Adaptive RR Architecture

4.4 Adaptive RR Pseudo Code

1. First of all examine ready queue is empty

2. When ready queue is vacant then all the processes are assigned into the ready queue.

3. All the processes are sorted in increasing order that means smaller burst time process get higher priority and larger burst time process get lower priority.

4. While (ready queue!= NULL)

5. Compute Smart Time Slice:

 If (Number of process%2 = = 0)

 STS = average CPU burst time of all processes

 Else
STS = mid process burst time

6. Allocate smart time slice to the i^{th} process:

 $P_i \leftarrow STS$

 $i = i + 1$

7. If ($i < \text{Number of process}$) then go to step 6.

8. If a new process is arrived modernize the ready queue, go to step 2.

9. End of While

10. Compute average waiting time, turnaround time, context switches.

11. End
4.4.1 Flowchart for Adaptive RR

Figure 4-3 Flowchart for Adaptive Round Robin

4.4.2 Practical Implementation

Assumptions
1. The system should be unprocessed

2. The numbers of processes are unconventional

3. Smart Time Slice is deliberated form the number of processes and their burst time. All the parameters like number of processes, their respective burst time and arrival time should be priori known

4. All the processes are CPU bound

5. No Processes are I/O bound

4.4.3 Experimental work

Adaptive RR Algorithm consists of several input and output parameters like:

Input parameters

1. Number of process

2. CPU burst time

3. Arrival Time

4. Smart Time Slice

5. Priority

Output Parameters

1. Average Waiting Time

2. Average Turnaround Time

3. Number of context switches

4.4.4 Performance Metrics

1. **Average Waiting Time**: For better presentation on proposed algorithm, the average waiting time should be small comparison to simple RR.
2. **Average Turnaround Time:** For better presentation on proposed algorithm, the average turnaround time should be small comparison to simple RR.

3. **Context Switches:** For good presentation on proposed algorithm, the number of context switches should be minimum comparison to simple RR.

4.4.5 Data Set

1. In first three cases I am appraising the data sets as the odd number of processes with burst time in increasing, decreasing and random order. The arrival time for every processes is zero.

2. Again in next three cases comprising even number of processes with burst time in increasing, decreasing and random order. The arrival time for all processes is zero.

4.4.6 Research Practice with Expected Outcomes

To assess the performance of Adaptive RR algorithm, we have taken a set of processes in different cases. Here for simplcity, we have taken 5 or 4 processes. The algorithm performs effectively even if it used with a very large number of processes. In each case, we have contrasted the experimental results of Adaptive algorithm with the Simple Round Robin Scheduling Algorithm with fixed time quantum Q. Here we have supposed a constant time quantum Q for simple RR and compare with Adaptive RR. In our calculation I have varied the smart time slice which is rely on the number of processes. The smart time slice can be calculated according to proposed plan.

Case 1:

We sort five processes arriving at time = 0, with increasing burst time (P1 = 10, P2 =20, P3 = 30, P4 = 40, P5 = 50) with time quantum =10 as shown in Table 4.1. The Table 4.2 shows the output using RR algorithm and Adaptive RR algorithm. Figure 4.4 and Figure 4.5 shows Gantt chart for both the algorithms simple RR and Adaptive RR respectively.

Table 4-1 Example of RR and ARR

<table>
<thead>
<tr>
<th>Process</th>
<th>Arrival Time (ms)</th>
<th>Burst Time (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>0</td>
<td>10</td>
</tr>
</tbody>
</table>
Number of Context Switches = 14

Waiting time of P1 = 0

Waiting time of P2 = 40

Waiting time of P3 = 70

Waiting time of P4 = 90

Waiting time of P5 = 100

Average Waiting Time = [(P1+P2+P3+P4+P5)]/5

= (0+40+70+90+100)/5

= 300/5

= 60 ms

Turnaround Time for P1 = 10

Turnaround Time for P2 = 60

Turnaround Time for P3 = 100

Turnaround Time for P4 = 130
Proposed Algorithm

Turnaround Time for P5 = 150

Average Turnaround Time = [(P1+P2+P3+P4+P5)\]/5

= (10+60+100+130+150)/5

= 450/5

= 90 ms

According to our proposed Algorithm

First of all we sort the processes in ready queue according their given burst time in increasing order that is P1=10, P2=20, P3=30, P4=40 and P5=50 and after that we choose the time quantum according Adaptive RR algorithm, the time quantum is the mid process burst time if the given processes are odd, that is 30. The Gantt chart for Adaptive RR

<table>
<thead>
<tr>
<th>P1</th>
<th>P2</th>
<th>P3</th>
<th>P4</th>
<th>P5</th>
<th>P4</th>
<th>P5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10</td>
<td>30</td>
<td>60</td>
<td>90</td>
<td>120</td>
<td>130</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>150</td>
</tr>
</tbody>
</table>

Figure 4-5 Gantt chart for Adaptive RR

Number of Context Switches = 6

Waiting time of P1 = 0

Waiting time of P2 = 10

Waiting time of P3 = 30

Waiting time of P4 = 90

Waiting time of P5 = 100

Average Waiting Time = [(P1+P2+P3+P4+P5)\]/5

= (0+10+30+90+100)/5

= 230/5 ms

= 46 ms
Turnaround Time for P1 = 10

Turnaround Time for P2 = 30

Turnaround Time for P3 = 60

Turnaround Time for P4 = 130

Turnaround Time for P5 = 150

Average Turnaround Time = \(\frac{(P1+P2+P3+P4+P5)}{5} \)

= \(\frac{(10+30+60+130+150)}{5} \)

= 380/5

= 76 m

Table 4-2 Comparison of Simple RR and Adaptive RR

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Time Quantum</th>
<th>C</th>
<th>S</th>
<th>Average WT</th>
<th>Average TAT</th>
<th>Through Put</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple RR</td>
<td>10</td>
<td>14</td>
<td>60</td>
<td>90</td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td>Adaptive RR</td>
<td>45</td>
<td>6</td>
<td>46</td>
<td>76</td>
<td>High</td>
<td></td>
</tr>
</tbody>
</table>

Case 2:

We suppose five processes arriving at time = 0, with increasing burst time (P1 =13, P2 =35, P3 = 46, P4 = 63, P5 = 97) with time quantum = 25 as shown in Table 4.3. The Table 4.4 shows the output using RR algorithm and Adaptive RR algorithm. Figure 4.6 and Figure 4.7 shows Gantt chart for both the algorithms respectively.

Table 4-3 Example 2 of RR and ARR

<table>
<thead>
<tr>
<th>Process</th>
<th>Arrival Time (ms)</th>
<th>Burst Time (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>0</td>
<td>13</td>
</tr>
<tr>
<td>P2</td>
<td>0</td>
<td>35</td>
</tr>
</tbody>
</table>
Proposed Algorithm

Figure 4-6 Gantt chart for simple RR

<table>
<thead>
<tr>
<th></th>
<th>P1</th>
<th>P2</th>
<th>P3</th>
<th>P4</th>
<th>P5</th>
<th>P2</th>
<th>P3</th>
<th>P4</th>
<th>P5</th>
<th>P5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>13</td>
<td>38</td>
<td>63</td>
<td>88</td>
<td>113</td>
<td>123</td>
<td>144</td>
<td>194</td>
<td>207</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>63</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td></td>
<td>97</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Number of context switches = 11
Waiting time of P1 = 0
Waiting time of P2 = 88
Waiting time of P3 = 98
Waiting time of P4 = 144
Waiting time of P5 = 157

Average Waiting Time = [(P1+P2+P3+P4+P5)]/5
= [(0+88+98+144+157)]/5
= (487)/5
= 97.4 ms

Turnaround Time for P1 = 13
Turnaround Time for P2 = 123
Turnaround Time for P3 = 144
Turnaround Time for P4 = 207
Turnaround Time for P5 = 254

Average Turnaround Time = [(P1+P2+P3+P4+P5)]/5
= [(13+123+144+207+254)]/5
= 741/5
= 148.2 ms

According our proposed mechanism
First of all we sort the processes in ready queue according their given burst time in increasing order that is P1 = 13, P2 = 35, P3 = 46, P4 = 63, P5 = 97 and after that we choose the time quantum according Adaptive RR algorithm, the time quantum is the mid process burst time if the given processes are odd, that is 46. The Gantt chart for Adaptive RR

<table>
<thead>
<tr>
<th>P1</th>
<th>P2</th>
<th>P3</th>
<th>P4</th>
<th>P5</th>
<th>P4</th>
<th>P5</th>
<th>P5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>13</td>
<td>48</td>
<td>94</td>
<td>140</td>
<td>186</td>
<td>203</td>
<td>249</td>
</tr>
</tbody>
</table>

Figure 4-6 Gantt chart for Adaptive RR

Number of context switches = 7

Waiting time of P1 = 0
Waiting time of P2 = 13
Waiting time of P3 = 48
Waiting time of P4 = 140
Waiting time of P5 = 157

Average Waiting Time = \[
\frac{(P1+P2+P3+P4+P5)}{5}
\]
\[
= \frac{(0+13+48+140+157)}{5}
\]
\[
= \frac{358}{5}
\]
\[
= 71.6 \text{ ms}
\]

Turnaround Time for P1 = 13
Turnaround Time for P2 = 48
Turnaround Time for P3 = 94
Turnaround Time for P4 = 203
Turnaround Time for P5 = 254

Average Turnaround Time = \[
\frac{(P1+P2+P3+P4+P5)}{5}
\]
\begin{align*}
= \frac{(13+48+94+203+254)}{5} \\
= 612 \\
= 122.4 \text{ ms}
\end{align*}

Table 4-4 Comparison of simple RR and Adaptive RR

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Time Quantum</th>
<th>CS</th>
<th>Average WT</th>
<th>Average TAT</th>
<th>Throughput</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple RR</td>
<td>25</td>
<td>11</td>
<td>97.4</td>
<td>148.2</td>
<td>Low</td>
</tr>
<tr>
<td>Adaptive RR</td>
<td>46</td>
<td>7</td>
<td>71.6</td>
<td>122.4</td>
<td>High</td>
</tr>
</tbody>
</table>

Case 3:

We suppose five processes arriving at time = 0, with random execution time (P1 = 54, P2 = 99, P3 = 5, P4 = 27, P5 = 32) with time quantum = 10 as shown in Table 4.5. The Table 4.6 shows the output using RR algorithm and Adaptive RR algorithm. Figure 4.8 and Figure 4.9 shows Gantt chart for both the algorithms respectively.

Table 4-5 Example 3 of RR and ARR

<table>
<thead>
<tr>
<th>Process</th>
<th>Arrival Time (ms)</th>
<th>Burst Time (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>0</td>
<td>54</td>
</tr>
<tr>
<td>P2</td>
<td>0</td>
<td>99</td>
</tr>
<tr>
<td>P3</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>P4</td>
<td>0</td>
<td>27</td>
</tr>
<tr>
<td>P5</td>
<td>0</td>
<td>32</td>
</tr>
</tbody>
</table>

![Gantt chart for simple RR](image)
Number of context switches = 23
Waiting time of P1 = 114
Waiting time of P2 = 118
Waiting time of P3 = 20
Waiting time of P4 = 85
Waiting time of P5 = 112

Average Waiting Time = \(\frac{\text{Waiting time of P1} + \text{Waiting time of P2} + \text{Waiting time of P3} + \text{Waiting time of P4} + \text{Waiting time of P5}}{5} \)
= \(\frac{114 + 118 + 20 + 85 + 112}{5} \)
= \(\frac{449}{5} \)
= 89.8 ms

Turnaround Time for P1 = 168
Turnaround Time for P2 = 217
Turnaround Time for P3 = 25
Turnaround Time for P4 = 112
Turnaround Time for P5 = 144

Average Turnaround Time = \(\frac{\text{Turnaround Time for P1} + \text{Turnaround Time for P2} + \text{Turnaround Time for P3} + \text{Turnaround Time for P4} + \text{Turnaround Time for P5}}{5} \)
= \(\frac{168 + 217 + 25 + 122 + 144}{5} \)
= 666
= 133.2 ms

According our proposed mechanism

First of all we sort the processes in ready queue according their given burst time in increasing order that is P3=5, P4= 27, P5=32, P1=54 and P2=99 and after that we choose the time quantum according Adaptive RR algorithm, the time quantum is the mid process burst time if the given processes are odd, that is 32.The Gantt chart for Adaptive RR

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P3</td>
<td>P4</td>
<td>P5</td>
<td>P1</td>
<td>P2</td>
<td>P1</td>
<td>P2</td>
<td>P2</td>
<td>P2</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>5</td>
<td>32</td>
<td>64</td>
<td>96</td>
<td>128</td>
<td>150</td>
<td>182</td>
<td>214</td>
<td>217</td>
</tr>
</tbody>
</table>

Figure 4-8 Gantt chart for Adaptive RR

Number of context switches = 8
Waiting time of P1 = 96
Waiting time of P2 = 118
Waiting time of P3 = 0
Waiting time of P4 = 5
Waiting time of P5 = 32

Average Waiting Time = \[\frac{(96+118+0+5+32)}{5}\]

\[= \frac{251}{5}\]

\[= 50.2 \text{ ms}\]

Turnaround Time for P1 = 150
Turnaround Time for P2 = 217
Turnaround Time for P3 = 5
Turnaround Time for P4 = 32
Turnaround Time for P5 = 64

Average Turnaround Time = \[\frac{(150+217+5+32+64)}{5}\]

\[= \frac{93.6}{5}\]

\[= 93.6 \text{ ms}\]

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Time Quantum</th>
<th>CS</th>
<th>Average WT</th>
<th>Average TAT</th>
<th>Throughput</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple RR</td>
<td>26</td>
<td>23</td>
<td>89.8</td>
<td>133.2</td>
<td>Low</td>
</tr>
<tr>
<td>Adaptive RR</td>
<td>35</td>
<td>8</td>
<td>50.2</td>
<td>93.6</td>
<td>High</td>
</tr>
</tbody>
</table>
Case 4:

We suppose five processes arriving at time = 0, with increasing burst time (P1 = 14, P2 = 34, P3 = 45, P4 = 62, P5 = 77) with time quantum = 25 as shown in Table 4.7. The Table 4.8 shows the output using RR algorithm and Adaptive RR algorithm. Figure 4.10 and Figure 4.11 shows Gantt chart for both the algorithms simple RR and Adaptive RR respectively.

<table>
<thead>
<tr>
<th>Process</th>
<th>Arrival Time (ms)</th>
<th>Burst Time (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>0</td>
<td>14</td>
</tr>
<tr>
<td>P2</td>
<td>0</td>
<td>34</td>
</tr>
<tr>
<td>P3</td>
<td>0</td>
<td>45</td>
</tr>
<tr>
<td>P4</td>
<td>0</td>
<td>62</td>
</tr>
<tr>
<td>P5</td>
<td>0</td>
<td>77</td>
</tr>
</tbody>
</table>

Number of Context Switches = 11
Waiting time of P1 = 0
Waiting time of P2 = 89
Waiting time of P3 = 98
Waiting time of P4 = 143
Waiting time of P5 = 155

Average Waiting Time = \[\frac{(0+89+98+143+155)}{5}\]
= \[\frac{486}{5}\]
= 97 ms
Turnaround Time for P1 = 14
Turnaround Time for P2 = 123
Turnaround Time for P3 = 143
Turnaround Time for P4 = 205
Turnaround Time for P5 = 232

Average Turnaround Time = [(P1+P2+P3+P4+P5)]/5
= (14+123+143+205+232)/5
= 717/5
= 143.4 ms

According our proposed mechanism

First of all we sort the processes in ready queue according their given burst time in increasing order that is P1=14, P2=34, P3=45, P4=62 and P5=77 and after that we choose the time quantum according Adaptive RR algorithm, the time quantum is the mid process burst time if the given processes are odd, that is 45. The Gantt chart for Adaptive RR

![Gantt chart for Adaptive RR](image)

Number of Context Switches = 6
Waiting time of P1 = 0
Waiting time of P2 = 14
Waiting time of P3 = 48
Waiting time of P4 = 138
Waiting time of P5 = 155

Average Waiting Time = [(P1+P2+P3+P4+P5)]/5
= (0+14+48+138+155)/5
= 71 ms

Turnaround Time for P1 = 14
Turnaround Time for P2 = 48
Turnaround Time for P3 = 93
Turnaround Time for P4 = 200
Turnaround Time for P5 = 232

Average Turnaround Time = (P1+P2+P3+P4+P5)/5
= (14+48+93+200+232)/5
= 587/5
= 117.4 ms

Table 4-8 Comparison of Simple RR and Adaptive RR

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Time Quantum</th>
<th>CS</th>
<th>Average WT</th>
<th>Average TAT</th>
<th>Throughput</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple RR</td>
<td>25</td>
<td>11</td>
<td>97</td>
<td>143.4</td>
<td>Low</td>
</tr>
<tr>
<td>Adaptive RR</td>
<td>45</td>
<td>6</td>
<td>71</td>
<td>117.4</td>
<td>High</td>
</tr>
</tbody>
</table>

Case 5:
We suppose five processes arriving at time = 0, with decreasing burst time (P1 = 83, P2 = 54, P3 = 30, P4 = 19, P5 = 8) with time quantum = 26 as shown in Table 4.9. The Table 4.10 shows the output using RR algorithm and Adaptive RR algorithm. Figure 4.12 and Figure 4.13 shows Gantt chart for both the algorithms respectively.

Table 4-9 Example 2 of RR and ARR

<table>
<thead>
<tr>
<th>Process</th>
<th>Arrival Time (ms)</th>
<th>Burst Time (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>0</td>
<td>83</td>
</tr>
<tr>
<td>P2</td>
<td>0</td>
<td>54</td>
</tr>
<tr>
<td>P3</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>P4</td>
<td>0</td>
<td>19</td>
</tr>
<tr>
<td>P5</td>
<td>0</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P1</th>
<th>P2</th>
<th>P3</th>
<th>P4</th>
<th>P5</th>
<th>P1</th>
<th>P2</th>
<th>P3</th>
<th>P1</th>
<th>P2</th>
<th>P1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>26</td>
<td>52</td>
<td>78</td>
<td>97</td>
<td>105</td>
<td>131</td>
<td>157</td>
<td>161</td>
<td>187</td>
<td>189</td>
</tr>
</tbody>
</table>
Number of context switches = 10
Waiting time of P1 = 111
Waiting time of P2 = 135
Waiting time of P3 = 131
Waiting time of P4 = 78
Waiting time of P5 = 97
Average Waiting Time = \[((P1+P2+P3+P4+P5))/5\]
 = \[(111+135+131+78+97))/5\]
 = (552)/5
 = 110.4 ms

Turnaround Time for P1 = 194
Turnaround Time for P2 = 189
Turnaround Time for P3 = 161
Turnaround Time for P4 = 97
Turnaround Time for P5 = 105
Average Turnaround Time = \[(P1+P2+P3+P4+P5))/5\]
 = \[(194+189+161+97+105)/5\]
 = 746/5
 = 149.2 ms

According our proposed mechanism

First of all I sort the processes in ready queue according their given burst time in increasing order that is P5=8, P4=19, P3=30, P2=54 and P5=83 and after that I choosing the time quantum according Adaptive RR algorithm, the time quantum is the mid process burst time if the given processes are odd, that is 30. The Gantt chart for Adaptive RR

<table>
<thead>
<tr>
<th>P5</th>
<th>P4</th>
<th>P3</th>
<th>P2</th>
<th>P1</th>
<th>P2</th>
<th>P1</th>
<th>P1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>8</td>
<td>27</td>
<td>57</td>
<td>87</td>
<td>117</td>
<td>141</td>
<td>171</td>
</tr>
</tbody>
</table>
Number of context switches = 7
Waiting time of P1 = 14
Waiting time of P2 = 87
Waiting time of P3 = 27
Waiting time of P4 = 8
Waiting time of P5 = 0
Average Waiting Time = [(P1+P2+P3+P4+P5)]/5
= [(111+87+27+8+0)]/5
= (233)/5
= 46.6 ms
Turnaround Time for P1 = 194
Turnaround Time for P2 = 141
Turnaround Time for P3 = 57
Turnaround Time for P4 = 27
Turnaround Time for P5 = 8
Average Turnaround Time = [(P1+P2+P3+P4+P5)]/5
= [(194+141+57+27+8)]/5
= 85.4 ms

Table 4-10 Comparison of simple RR and Adaptive RR

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Time Quantum</th>
<th>CS</th>
<th>Average WT</th>
<th>Average TAT</th>
<th>Throughput</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple RR</td>
<td>26</td>
<td>10</td>
<td>110.4</td>
<td>149.2</td>
<td>Low</td>
</tr>
<tr>
<td>Adaptive RR</td>
<td>30</td>
<td>7</td>
<td>46.6</td>
<td>85.4</td>
<td>High</td>
</tr>
</tbody>
</table>

Case 6:

We suppose five processes arriving at time = 0, with random execution time (P1 = 56, P2 = 96, P3 = 9, P4 = 23, P5 = 35) with time quantum = 26 as shown in Table 4.11. The Table
4.12 shows the output using RR algorithm and Adaptive RR algorithm. Figure 4.14 and Figure 4.15 shows Gantt chart for both the algorithms respectively.

<table>
<thead>
<tr>
<th>Process</th>
<th>Arrival Time (ms)</th>
<th>Burst Time (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>0</td>
<td>56</td>
</tr>
<tr>
<td>P2</td>
<td>0</td>
<td>96</td>
</tr>
<tr>
<td>P3</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>P4</td>
<td>0</td>
<td>23</td>
</tr>
<tr>
<td>P5</td>
<td>0</td>
<td>35</td>
</tr>
</tbody>
</table>

Number of context switches = 10
Waiting time of P1 = 119
Waiting time of P2 = 123
Waiting time of P3 = 52
Waiting time of P4 = 61
Waiting time of P5 = 136
Average Waiting Time = \([((P1+P2+P3+P4+P5))/5\]
= \[((119+123+52+61+136))/5\]
= \[(491)/5\]
= 98.2 ms

Turnaround Time for P1 = 175
Turnaround Time for P2 = 219
Turnaround Time for P3 = 61
Turnaround Time for P4 = 84
Turnaround Time for P5 = 171
Average Turnaround Time = [(P1+P2+P3+P4+P5)]/5
= [(175+219+61+84+171)]/5
= 142 ms

According our proposed mechanism:

First of all we sort the processes in ready queue according their given burst time in increasing order that is P3=9, P4=23, P5=35, P1=56 and P2=96 and after that we select the time quantum according Adaptive RR algorithm, the time quantum is the mid process burst time if the given processes are odd, that is 35. The Gantt chart for Adaptive RR

<table>
<thead>
<tr>
<th>P3</th>
<th>P4</th>
<th>P5</th>
<th>P1</th>
<th>P2</th>
<th>P1</th>
<th>P2</th>
<th>P2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>9</td>
<td>32</td>
<td>67</td>
<td>102</td>
<td>137</td>
<td>158</td>
<td>193</td>
</tr>
<tr>
<td>219</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 4-14 Gantt chart for Adaptive RR

Number of context switches = 7

Waiting time of P1 = 102
Waiting time of P2 = 123
Waiting time of P3 = 0
Waiting time of P4 = 9
Waiting time of P5 = 32
Average Waiting Time = [(P1+P2+P3+P4+P5)]/5
= [(102+123+0+9+32)]/5
= 53.2 ms

Turnaround Time for P1 = 158
Turnaround Time for P2 = 219
Turnaround Time for P3 = 9
Turnaround Time for P4 = 32
Turnaround Time for P5 = 67
Average Turnaround Time = [(P1+P2+P3+P4+P5)]/5
= [(158+219+9+32+67)]/5
= 97 ms
Case 7:

We suppose four processes arriving at time = 0, with increasing burst time (P1 = 20, P2 =31, P3 = 43, P4 = 55) with time quantum =26 as shown in Table 4.13. The Table 4.14 shows the output using RR algorithm and Adaptive RR algorithm. Figure 4.16 and Figure 4.17 shows Gantt chart for both the algorithms respectively.

Table 4-13 Example 7 of RR and ARR

<table>
<thead>
<tr>
<th>Process</th>
<th>Arrival Time (ms)</th>
<th>Burst Time (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>P2</td>
<td>0</td>
<td>31</td>
</tr>
<tr>
<td>P3</td>
<td>0</td>
<td>43</td>
</tr>
<tr>
<td>P4</td>
<td>0</td>
<td>55</td>
</tr>
</tbody>
</table>

Figure 4-15 Gantt chart for Simple RR

Number of Context Switches = 6
Waiting time of P1 = 0
Waiting time of P2 = 72
Waiting time of P3 = 77
Waiting time of P4 = 94
Average Waiting Time = [(P1+P2+P3+P4)]/4
According Adaptive RR mechanism:

First of all we sort the processes in ready queue according their given burst time in increasing order that is P1=20, P2=31, P3=43 and P4=55 and after that we choose the time quantum according Adaptive RR Algorithm, the time quantum is the average processes burst time if the given processes are even, that is 37.

The Gantt chart for Adaptive RR

![Gantt chart for Adaptive RR](image)

Figure 4-16 Gantt chart for Adaptive RR

Number of Context Switches = 5

Waiting time of P1 = 0
Waiting time of P2 = 20
Waiting time of P3 = 88
Waiting time of P4 = 94

Average Waiting Time = \[\frac{(P1+P2+P3+P4)}{4}\]

= (0+20+88+94)/4
Proposed Algorithm

= 202/4
= 50.5 ms

Turnaround Time for P1 = 20
Turnaround Time for P2 = 51
Turnaround Time for P3 = 131
Turnaround Time for P4 = 149

Average Turnaround Time = [(P1+P2+P3+P4)]/4
= (20+51+131+149)/4
= 351/4
= 87.75 ms

Table 4-14 Comparison of simple RR and Adaptive RR

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Time Quantum</th>
<th>CS</th>
<th>Average WT</th>
<th>Average TAT</th>
<th>Throughput</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple RR</td>
<td>26</td>
<td>7</td>
<td>60.75</td>
<td>98</td>
<td>Low</td>
</tr>
<tr>
<td>Adaptive RR</td>
<td>37</td>
<td>5</td>
<td>50.50</td>
<td>87.75</td>
<td>High</td>
</tr>
</tbody>
</table>

Case 8: We suppose five processes arriving at time = 0, with decreasing burst time (P1 = 43, P2 = 32, P3 = 24, P4 = 17) with time quantum = 26 as shown in Table 4.15. The Table 4.16 shows the output using RR algorithm and Adaptive RR algorithm. Figure 4.18 and Figure 4.19 shows Gantt chart for both the algorithms respectively

Table 4-15 Example 8 of RR and ARR

<table>
<thead>
<tr>
<th>Process</th>
<th>Arrival Time (ms)</th>
<th>Burst Time (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>0</td>
<td>43</td>
</tr>
<tr>
<td>P2</td>
<td>0</td>
<td>32</td>
</tr>
<tr>
<td>P3</td>
<td>0</td>
<td>24</td>
</tr>
<tr>
<td>P4</td>
<td>0</td>
<td>17</td>
</tr>
</tbody>
</table>
Number of Context Switches = 5
Waiting time of P1 = 67
Waiting time of P2 = 84
Waiting time of P3 = 52
Waiting time of P4 = 76
Average Waiting Time = \(\frac{(P1+P2+P3+P4)}{4}\)
\[= \frac{67+84+52+76}{4}\]
\[= 69.75 \text{ ms}\]

Turnaround Time for P1 = 110
Turnaround Time for P2 = 116
Turnaround Time for P3 = 76
Turnaround Time for P4 = 93
Average Turnaround Time = \(\frac{(P1+P2+P3+P4)}{4}\)
\[= \frac{110+116+76+93}{4}\]
\[= 98.75 \text{ ms}\]

According Adaptive RR mechanism:

First of all we sort the processes in ready queue according their given burst time in increasing order that is P4=17, P3=24, P2=32 and P1=43 and after that we choose the time quantum according Adaptive RR algorithm, the time quantum is the average processes burst time if the given processes are even, that is 29. The Gantt chart for Adaptive RR
Proposed Algorithm

Figure 4-18 Gantt chart for Adaptive RR

Number of Context Switches = 5
Waiting time of P1 = 73
Waiting time of P2 = 70
Waiting time of P3 = 17
Waiting time of P4 = 0

Average Waiting Time = \[\frac{(73+70+17+0)}{4}\]
= \[\frac{160}{4}\]
= 40 ms

Turnaround Time for P1 = 106
Turnaround Time for P2 = 102
Turnaround Time for P3 = 41
Turnaround Time for P4 = 17

Average Turnaround Time = \[\frac{(106+102+41+17)}{4}\]
= \[\frac{276}{4}\]
= 69 ms

Table 4-16 Comparison of simple RR and Adaptive RR

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Time Quantum</th>
<th>CS</th>
<th>Average WT</th>
<th>Average TAT</th>
<th>Throughput</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple RR</td>
<td>26</td>
<td>5</td>
<td>69.75</td>
<td>98.75</td>
<td>Low</td>
</tr>
<tr>
<td>Adaptive RR</td>
<td>29</td>
<td>5</td>
<td>40</td>
<td>69</td>
<td>High</td>
</tr>
</tbody>
</table>

Case 9:

We suppose four processes arriving at time = 0, with random burst time (P1 = 20, P2 = 32, P3 = 9, P4 = 19) with time quantum =16 as shown in Table 4.17. The Table 4.18 shows
the output using RR algorithm and Adaptive R algorithm. Figure 4.20 and Figure 4.21 shows Gantt chart for both the algorithms respectively.

Table 4-17 Example 6 of RR and ARR

<table>
<thead>
<tr>
<th>Process</th>
<th>Arrival Time (ms)</th>
<th>Burst Time (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>P2</td>
<td>0</td>
<td>32</td>
</tr>
<tr>
<td>P3</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>P4</td>
<td>0</td>
<td>19</td>
</tr>
</tbody>
</table>

Figure 4-19 Gantt chart for Simple RR

Number of Context Switches = 6
Waiting time of P1 = 41
Waiting time of P2 = 45
Waiting time of P3 = 32
Waiting time of P4 = 61
Average Waiting Time = \([(P1+P2+P3+P4)]/4\)
= (41+45+32+61)/4
= 179/4
= 44.75 ms

Turnaround Time for P1 = 61
Turnaround Time for P2 = 77
Turnaround Time for P3 = 41
Turnaround Time for P4 = 80
Average Turnaround Time = \([(P1+P2+P3+P4)]/4\)
= (61+77+41+80)/4
= 259/4
According Adaptive RR mechanism

First of all we order the processes in ready queue according their given burst time in increasing order that is P3=9, P4=19, P1=20 and P2=32 and after that we choose the time quantum according Adaptive RR algorithm, the time quantum is the average processes burst time if the provided processes are even, that is 20. The Gantt chart for Adaptive RR

<table>
<thead>
<tr>
<th>P3</th>
<th>P4</th>
<th>P1</th>
<th>P2</th>
<th>P2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>9</td>
<td>28</td>
<td>48</td>
<td>68</td>
</tr>
<tr>
<td>80</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Figure 4-20 Gantt chart for Adaptive RR](image)

Number of Context Switches = 4

Waiting time of P1 = 28
Waiting time of P2 = 48
Waiting time of P3 = 0
Waiting time of P4 = 9

Average Waiting Time = \(\frac{(P1+P2+P3+P4)}{4} \)

= \(\frac{(28+48+0+9)}{4} \)

= 85/4

= 21.25 ms

Turnaround Time for P1 = 48
Turnaround Time for P2 = 80
Turnaround Time for P3 = 9
Turnaround Time for P4 = 28

Average Turnaround Time = \(\frac{(P1+P2+P3+P4)}{4} \)

= \(\frac{(48+80+9+0)}{4} \)

= 165/4
Proposed Algorithm

\[= 41.25 \text{ ms} \]

Table 4-18 Comparison of simple RR and Adaptive RR

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Time Quantum</th>
<th>CS</th>
<th>Average WT</th>
<th>Average TAT</th>
<th>Throughput</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple RR</td>
<td>16</td>
<td>6</td>
<td>44.75</td>
<td>64.7</td>
<td>Low</td>
</tr>
<tr>
<td>Adaptive RR</td>
<td>20</td>
<td>3</td>
<td>21.25</td>
<td>41.25</td>
<td>High</td>
</tr>
</tbody>
</table>

Case 10:

We suppose five processes arriving at time = 0, with random burst time (P1 = 24, P2 = 36, P3 = 3, P4 = 3 and P5 = 10) with time quantum = 4 as shown in Table 4.19. The Table 4.20 shows the output using RR algorithm and Adaptive RR algorithm. Figure 4.22 and Figure 4.23 shows Gantt chart for both the algorithms respectively.

Table 4-19 Example 10 of RR and ARR

<table>
<thead>
<tr>
<th>Process</th>
<th>Arrival Time (ms)</th>
<th>Burst Time (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>0</td>
<td>24</td>
</tr>
<tr>
<td>P2</td>
<td>0</td>
<td>36</td>
</tr>
<tr>
<td>P3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>P4</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>P5</td>
<td>0</td>
<td>10</td>
</tr>
</tbody>
</table>

Figure 4-21 Gantt chart for Simple RR

Number of Context Switches = 19

Waiting time of P1 = 36

Waiting time of P2 = 40
Waiting time of P3 = 8
Waiting time of P4 = 11
Waiting time of P5 = 30

Average Waiting Time = \[(P1+P2+P3+P4+P5)/5\]
= (36+40+8+11+30)/5
= 125/5
= 25 ms

Turnaround Time for P1 = 60
Turnaround Time for P2 = 76
Turnaround Time for P3 = 11
Turnaround Time for P4 = 14
Turnaround Time for P5 = 40

Average Turnaround Time = \[(P1+P2+P3+P4+P5)/5\]
= (60+76+11+14+40)/5
= 201/5
= 40.2 ms

According Adaptive RR mechanism:

First of all we order the processes in ready queue according their given burst time in increasing order that is P3=3, P4=3, P5=10, P1=24 and P2=36 and after that we selecting the time quantum according Adaptive RR algorithm, the time quantum is the mid processes burst time if the given processes are odd, that is 10.The Gantt chart for Adaptive RR

<table>
<thead>
<tr>
<th>P3</th>
<th>P4</th>
<th>P5</th>
<th>P1</th>
<th>P2</th>
<th>P1</th>
<th>P2</th>
<th>P1</th>
<th>P2</th>
<th>P2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
<td>6</td>
<td>16</td>
<td>26</td>
<td>36</td>
<td>46</td>
<td>56</td>
<td>60</td>
<td>70</td>
</tr>
</tbody>
</table>

Figure 4-22 Gantt chart for Adaptive RR

Number of Context Switches = 9

Waiting time of P1 = 36
Waiting time of P2 = 40
Waiting time of P3 = 0
Waiting time of P4 = 3
Waiting time of P5 = 6
Average Waiting Time = \[(P1+P2+P3+P4+p5)/5\]
\[= (36+40+0+3+6)/5\]
\[= 85/5\]
\[= 17 \text{ ms}\]

Turnaround Time for P1 = 60
Turnaround Time for P2 = 76
Turnaround Time for P3 = 3
Turnaround Time for P4 = 6
Turnaround Time for P5 = 16
Average Turnaround Time = \[(P1+P2+P3+P4+P5)/5\]
\[= (60+76+3+6+16)/5\]
\[= 161/5\]
\[= 32.2 \text{ ms}\]

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Time Quantum</th>
<th>CS</th>
<th>Average WT</th>
<th>Average TAT</th>
<th>Throughput</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple RR</td>
<td>4</td>
<td>19</td>
<td>25</td>
<td>40.2</td>
<td>Low</td>
</tr>
<tr>
<td>Adaptive RR</td>
<td>10</td>
<td>9</td>
<td>17</td>
<td>32.2</td>
<td>High</td>
</tr>
</tbody>
</table>

Table 4.20 Comparison of simple RR and Adaptive RR