TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER NO.</th>
<th>TITLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>xv</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>xvi</td>
</tr>
<tr>
<td></td>
<td>LIST OF SYMBOLS AND ABBREVIATIONS</td>
<td>xvii</td>
</tr>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>AN OVERVIEW</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>PATHWAY MODEL</td>
<td>2</td>
</tr>
<tr>
<td>1.3</td>
<td>SPECIAL FUNCTIONS</td>
<td>10</td>
</tr>
<tr>
<td>1.3.1</td>
<td>Gamma Function</td>
<td>11</td>
</tr>
<tr>
<td>1.3.2</td>
<td>Residue Calculus for Gamma Functions</td>
<td>12</td>
</tr>
<tr>
<td>1.3.3</td>
<td>Mellin-Barnes Integrals</td>
<td>13</td>
</tr>
<tr>
<td>1.3.4</td>
<td>Beta Integrals</td>
<td>13</td>
</tr>
<tr>
<td>1.3.5</td>
<td>Generalized Hypergeometric Series</td>
<td>14</td>
</tr>
<tr>
<td>1.3.6</td>
<td>Wright Hypergeometric Function</td>
<td>15</td>
</tr>
<tr>
<td>1.3.7</td>
<td>Meijer G-Function</td>
<td>15</td>
</tr>
<tr>
<td>1.3.8</td>
<td>Fox’s H-Function</td>
<td>16</td>
</tr>
<tr>
<td>1.4</td>
<td>INTEGRAL TRANSFORMS</td>
<td>19</td>
</tr>
<tr>
<td>1.4.1</td>
<td>Laplace Transform</td>
<td>20</td>
</tr>
<tr>
<td>1.4.2</td>
<td>Mellin Transform</td>
<td>20</td>
</tr>
<tr>
<td>1.5</td>
<td>FRACTIONAL CALCULUS</td>
<td>21</td>
</tr>
</tbody>
</table>
CHAPTER NO. TITLE PAGE NO.

1.5.1 Riemann-Liouville Fractional Operators 22
1.5.2 Erdély- Kober Fractional Operators 23
1.5.3 Saigo Fractional Operators 23
1.6 SUMMARY OF THE THESIS 24

2 GENERALIZED KRÄTZEL FUNCTION 28

2.1 INTRODUCTION 28
2.2 TYPE-1 AND TYPE-2 GENERALIZED KRÄTZEL FUNCTIONS 30
2.3 GENERALIZED KRÄTZEL FUNCTION AND FRACTIONAL OPERATORS 31
2.4 INEQUALITIES INVOLVING GENERALIZED KRÄTZEL FUNCTION
2.4.1 Complete Monotonicity and Log-Convexity 34
2.4.2 Laguerre Type Inequality 37
2.4.3 Turán Type Inequality 38
2.5 GENERALIZED KRÄTZEL FUNCTION AS AN ψ-FUNCTION 40
2.6 ASYMPTOTIC ESTIMATES OF GENERALIZED KRÄTZEL FUNCTION 46
2.7 GENERALIZED KRÄTZEL FUNCTION IN COMPUTABLE SERIES FORMS 48
2.8 INTEGRALS INVOLVING GENERALIZED KRÄTZEL FUNCTION 52
<table>
<thead>
<tr>
<th>CHAPTER NO.</th>
<th>TITLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>(\mathcal{P})-TRANSFORM AND (P_{\alpha})-TRANSFORM</td>
<td>55</td>
</tr>
<tr>
<td>3.1</td>
<td>INTRODUCTION</td>
<td>55</td>
</tr>
<tr>
<td>3.2</td>
<td>(\mathcal{P})-TRANSFORM AND ITS PROPERTIES</td>
<td>56</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Behaviour of Kernel Function of (\mathcal{P})-Transform</td>
<td>57</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Linearity Property</td>
<td>59</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Shifting Property</td>
<td>60</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Differential Operator and (\mathcal{P})-Transform</td>
<td>61</td>
</tr>
<tr>
<td>3.3</td>
<td>CONNECTION OF (\mathcal{P})-TRANSFORM WITH (\mathcal{I})-TRANSFORM</td>
<td>65</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Laplace Transform of a (\mathcal{P})-Transform</td>
<td>70</td>
</tr>
<tr>
<td>3.4</td>
<td>FRACTIONAL CALCULUS OF (\mathcal{P})-TRANSFORM</td>
<td>73</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Saigo Fractional Operator and (\mathcal{P})-Transform</td>
<td>73</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Riemann-Liouville Fractional Operator and (\mathcal{P})-Transform</td>
<td>79</td>
</tr>
<tr>
<td>3.5</td>
<td>(\mathcal{P})-TRANSFORM OF SOME GENERALIZED SPECIAL FUNCTIONS</td>
<td>82</td>
</tr>
<tr>
<td>3.5.1</td>
<td>(\mathcal{P})-Transform of a Power Function</td>
<td>82</td>
</tr>
<tr>
<td>3.5.2</td>
<td>(\mathcal{P})-Transform of an (\mathcal{I})-Function</td>
<td>84</td>
</tr>
<tr>
<td>3.5.3</td>
<td>(\mathcal{P})-Transform of a Generalized Hypergeometric Series</td>
<td>86</td>
</tr>
<tr>
<td>CHAPTER NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>3.6</td>
<td>\mathcal{P}_α-TRANSFORM AND ITS PROPERTIES</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>3.6.1 Composition of \mathcal{P}_α-Transform with Differentiability</td>
<td>92</td>
</tr>
<tr>
<td></td>
<td>3.6.2 Composition of \mathcal{P}_α-Transform With Integrability</td>
<td>93</td>
</tr>
<tr>
<td>3.7</td>
<td>\mathcal{P}_α-TRANSFORM OF SOME ELEMENTARY FUNCTIONS</td>
<td>95</td>
</tr>
<tr>
<td>3.8</td>
<td>\mathcal{P}_α-TRANSFORM OF SOME GENERALIZED SPECIAL FUNCTIONS</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>3.8.1 \mathcal{P}_α-Transform of a Power Function</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>3.8.2 \mathcal{P}_α-Transform of a Mittag-Leffler Function</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>3.8.3 \mathcal{P}_α-Transform of a Generalized Hypergeometric Series</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>3.8.4 \mathcal{P}_α-Transform of a Wright Hypergeometric Function</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>3.8.5 \mathcal{P}_α-Transform of an H-Function</td>
<td>99</td>
</tr>
<tr>
<td>3.9</td>
<td>APPLICATIONS OF \mathcal{P}_α-TRANSFORM</td>
<td>101</td>
</tr>
</tbody>
</table>

4 EXTENSION OF THERMONUCLEAR FUNCTIONS AND FUSION YIELD 106

4.1 INTRODUCTION 106

4.2 EXTENDED REACTION RATES IN CLOSED FORMS 113

4.2.1 Evaluation of $I_{3\alpha}(\nu, a, \delta, x, \rho)$ 115
<table>
<thead>
<tr>
<th>CHAPTER NO.</th>
<th>TITLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.2</td>
<td>Evaluation of $I_{2\gamma}^{(d)}(\nu, \alpha, \delta, x, \rho)$</td>
<td>119</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Behaviour of $I_{1\alpha}$, $I_{2\gamma}^{(d)}$ and $I_{3\gamma}$</td>
<td>121</td>
</tr>
<tr>
<td>4.3</td>
<td>SERIES REPRESENTATIONS</td>
<td>123</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Series Representation for Extended</td>
<td>124</td>
</tr>
<tr>
<td></td>
<td>Maxwell-Boltzmann Case</td>
<td></td>
</tr>
<tr>
<td>4.3.2</td>
<td>Series Representation for</td>
<td>131</td>
</tr>
<tr>
<td></td>
<td>Extended Cut-off Case</td>
<td></td>
</tr>
<tr>
<td>4.4</td>
<td>FUSION YIELD INTEGRAL FOR SHOCK-COMPRESSED</td>
<td>136</td>
</tr>
<tr>
<td></td>
<td>HEATED PLASMA</td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>FUSION ENERGY INTEGRAL BY</td>
<td>141</td>
</tr>
<tr>
<td></td>
<td>EXTENDED REACTION RATES</td>
<td></td>
</tr>
<tr>
<td>4.6</td>
<td>EXTENDED STELLAR NUCLEAR</td>
<td>144</td>
</tr>
<tr>
<td></td>
<td>ENERGY GENERATION RATES</td>
<td></td>
</tr>
<tr>
<td>4.7</td>
<td>ANALYSIS AND COMPARISON</td>
<td>151</td>
</tr>
<tr>
<td>4.7.1</td>
<td>Comparison of Maxwell-Boltzmann</td>
<td>155</td>
</tr>
<tr>
<td></td>
<td>and Pathway Densities</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>CONCLUSION AND FUTURE SCOPE</td>
<td>157</td>
</tr>
<tr>
<td>5.1</td>
<td>CONCLUSION</td>
<td>157</td>
</tr>
<tr>
<td>5.2</td>
<td>FUTURE SCOPE</td>
<td>159</td>
</tr>
</tbody>
</table>

REFERENCES | 161 |

LIST OF PUBLICATIONS | 176 |
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Special Cases of Generalized Type-1 Beta Form of Pathway Model</td>
<td>4</td>
</tr>
<tr>
<td>1.2</td>
<td>Special Cases of Generalized Type-2 Beta Form of Pathway Model</td>
<td>5</td>
</tr>
<tr>
<td>1.3</td>
<td>Special Cases of Generalized Gamma Form of Pathway Model</td>
<td>7</td>
</tr>
<tr>
<td>3.1</td>
<td>Table of I_{γ}-Transform</td>
<td>95</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Behaviour of $h_1(y)$ for Various Values of $\alpha < 1$</td>
<td>5</td>
</tr>
<tr>
<td>1.2</td>
<td>Behaviour of $h_2(y)$ for Various Values of $\alpha > 1$</td>
<td>6</td>
</tr>
<tr>
<td>3.1</td>
<td>Behaviour of $Z^{\mu,\alpha-}(x)$ for Various Values of $\alpha < 1$</td>
<td>58</td>
</tr>
<tr>
<td>3.2</td>
<td>Behaviour of $Z^{\mu,\alpha+}(x)$ for Various Values of $\alpha > 1$</td>
<td>58</td>
</tr>
<tr>
<td>4.1</td>
<td>Behaviour of $I_{1,\alpha}$ for Various Values of $\alpha > 1$</td>
<td>121</td>
</tr>
<tr>
<td>4.2</td>
<td>Behaviour of $I_{2,\alpha}^{(d)}$ for Various Values of $\alpha < 1$</td>
<td>122</td>
</tr>
<tr>
<td>4.3</td>
<td>Maxwell-Boltzmann Case or the Limiting Situation $\alpha = 1$</td>
<td>122</td>
</tr>
<tr>
<td>4.4</td>
<td>Depletion for $\delta = 1, 2, 3$ and $\alpha = 1, 1.2, 1.3, 1.4$</td>
<td>123</td>
</tr>
<tr>
<td>4.5</td>
<td>Behaviour of α for Various Values of $E \left(\frac{E}{kT} \right)$</td>
<td>153</td>
</tr>
<tr>
<td>4.6</td>
<td>$f_{PD}(E)$ for Various Values of α at $k=1$ and Temperature (a) 373K and (b) 1000K</td>
<td>153</td>
</tr>
<tr>
<td>4.7</td>
<td>Pathway Energy Density for $\alpha = 1, 1.2, 1.3, 1.4$ and for $k=1, T = 100K$</td>
<td>154</td>
</tr>
<tr>
<td>4.8</td>
<td>Maxwell-Boltzmann Energy Density for $k = 1$, $T = 100K$</td>
<td>154</td>
</tr>
<tr>
<td>4.9</td>
<td>Schematic Plot of the Energy-Dependent Factors for the Standard Reaction Rate Probability Integral</td>
<td>156</td>
</tr>
<tr>
<td>4.10</td>
<td>Schematic Plot of the Energy-Dependent Factors for the Extended Reaction Rate Probability Integral</td>
<td>156</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS AND ABBREVIATIONS

\[|(\cdot)| \quad - \quad \text{Absolute value of } (\cdot)
\]
\[\sim \quad - \quad \text{Asymptotically equivalent to}
\]
\[N_A \quad - \quad \text{Avagadro’s constant}
\]
\[k \quad - \quad \text{Boltzmann’s constant}
\]
\[g_c \quad - \quad \text{Central density of the Sun}
\]
\[P_c \quad - \quad \text{Central pressure of the Sun}
\]
\[T_c \quad - \quad \text{Central temperature of the Sun}
\]
\[M_{\alpha}(g) \quad - \quad \text{Continuous analogue of Mathai’s entropy of order } \alpha
\]
\[S(E) \quad - \quad \text{Cross section factor}
\]
\[\tilde{\alpha} \quad - \quad \text{Electromagnetic fine structure constant}
\]
\[E_{ij} \quad - \quad \text{Energy release by the fusion reaction}
\]
\[\gamma \quad - \quad \text{Euler’s constant}
\]
\[\mathcal{E}(\cdot) \quad - \quad \text{Expected value of } (\cdot)
\]
\[\langle \sigma v \rangle_{ij} \quad - \quad \text{Expected value of } \sigma v
\]
\[\tilde{E}_{\text{fusion}} \quad - \quad \text{Extended fusion yield}
\]
\[\tilde{r}_{ij} \quad - \quad \text{Extended reaction rates}
\]
\[I_{p,q}^{m,n}(\cdot) \quad - \quad \text{Fox’s } I/I\text{-function}
\]
\[\Gamma(z) \quad - \quad \text{Gamma function}
\]
\[E_G \quad - \quad \text{Gamow energy}
\]
\[pF_q(\cdot) \quad - \quad \text{Generalized hypergeometric series}
\]
\[E_{\beta,\rho}^{\beta}(z) \quad - \quad \text{Generalized Mittag-Leffler function with three parameters}
\]
\[E_{\beta,\rho}(z) \quad - \quad \text{Generalized Mittag-Leffler function with two parameters}
\]
\[G \quad - \quad \text{Gravitational constant}
\]
\[\mathcal{D} \quad - \quad \text{Integer order differential operator} \]
\[([\cdot]) \quad - \quad \text{Integer part of } (\cdot) \]

\[E \quad - \quad \text{Kinetic energy of the particles} \]

\[Z_p^{(n)}(x) \quad - \quad \text{Krätzel function} \]

\[(K^d_{\beta} f)(x) \quad - \quad \text{Krätzel transform} \]

\[\delta_{ij} \quad - \quad \text{Kronecker delta} \]

\[L_f(s), (L_f)(s) \quad - \quad \text{Laplace transform of } f \]

\[\mathbb{L}_{\alpha}(0, \infty) \quad - \quad \text{Lebesgue measurable complex valued functions} \]

\[(T^{-\gamma}_{\alpha}, f)(x) \quad - \quad \text{Left-sided Erdélyi-Kober fractional operator} \]

\[(T^{\gamma}_{\alpha}, f)(x) \quad - \quad \text{Left-sided Riemann-Liouville fractional integral} \]

\[(I^{-\gamma}_{0+}, f)(x) \quad - \quad \text{Left-sided Saigo fractional operator} \]

\[M^{\alpha}_{k,\alpha}(P) \quad - \quad \text{Mathai's additive entropy of order } \alpha \]

\[M^{\alpha}_{k,\alpha}(P) \quad - \quad \text{Mathai's entropy of order } \alpha \]

\[f_{MBD} \quad - \quad \text{Maxwell-Boltzmann energy density} \]

\[G_{p,q}^{m,n}(z) \quad - \quad \text{Meijer's } G\text{-function} \]

\[\mathfrak{L} \quad - \quad \text{Mellin-Barnes contour} \]

\[\mathcal{M}_f(s), (\mathcal{M}_f)(s) \quad - \quad \text{Mellin transform of } f \]

\[E_\beta(z) \quad - \quad \text{Mittag-Leffler function with one parameter} \]

\[D^m f(\cdot) \quad - \quad m\text{th integer order derivative of } f(\cdot) \]

\[f^{(m)}(\cdot) \quad - \quad m\text{th integer order derivative of } f(\cdot) \]

\[\ln(\cdot) \quad - \quad \text{Natural logarithm of } (\cdot) \]

\[\sigma(E) \quad - \quad \text{Nuclear reaction cross section} \]

\[f_{PD} \quad - \quad \text{Pathway energy density} \]

\[\alpha \quad - \quad \text{Pathway parameter} \]

\[h \quad - \quad \text{Planck's quantum of action} \]

\[(a)_p \quad - \quad \text{Pochhammer symbol} \]
$\psi(z)$ - Psi function

$P_\alpha[f(t),s]$ - P_α-transform

$\Re(\cdot)$ - Real part of (\cdot)

$\text{res}_{z=a} f(z)$ - Residue of $f(z)$ at $z = a$

$(D_{-}^{-\lambda}f)x$ - Riemann-Liouville fractional derivative

$(K_{\gamma}^{-\alpha}, f)x, (I_{-1,1}^{-\alpha}, f)x$ - Right-sided Erdélyi-Kober fractional operator

$(\mathcal{I}_{-}^{-\lambda}f)x$ - Right-sided Riemann-Liouville fractional integral

$(I_{-\alpha}^{-\alpha}, f)x$ - Right-sided Saigo fractional operator

\mathbb{C} - Set of complex numbers

\mathbb{Q}^+ - Set of positive rational numbers

\mathbb{R}^+ - Set of positive real numbers

\mathbb{R} - Set of real numbers

$\rho(r)$ - Solar density distribution

$\eta(E)$ - Sommerfeld parameter

r_{ij} - Standard reaction rates

L_r - Stellar luminosity

$M(r)$ - Stellar mass

$T(r)$ - Stellar temperature

\rightarrow - Tends to

$l_{2,\alpha}^{(d)}$ - Thermonuclear function in the extended cut-off case

$l_{3,\alpha}^{(d)}$ - Thermonuclear function in the extended depleted case

$l_{1,\alpha}$ - Thermonuclear function in the extended Maxwell-Boltzmann case

$l_{2}^{(d)}$ - Thermonuclear function in the standard cut-off case

l_3 - Thermonuclear function in the standard depleted case
\(I_1 \) - Thermonuclear function in the standard Maxwell-Boltzmann case

\(I_4 \) - Thermonuclear function in the standard screened case

\(Z_\rho^{\mu,\alpha} (x) \) - Type-1 generalized Krätzel function

\((\mathcal{P}_{\nu}^{\lambda,\beta,\alpha} f)x \) - Type-1 \(\mathcal{P} \)-transform

\(Z_\rho^{\mu,\alpha-} (x) \) - Type-1 \(\mathcal{P} \)-transform kernel

\(Z_\rho^{\mu,\alpha+} (x) \) - Type-2 generalized Krätzel function

\((\mathcal{P}_{\nu}^{\lambda,\beta,\alpha+} f)x \) - Type-2 \(\mathcal{P} \)-transform

\(Z_\rho^{\mu,\alpha} (x) \) - Type-2 \(\mathcal{P} \)-transform kernel

\(\wedge \) - Wedge product

\(p \Psi_q(\cdot) \) - Wright hypergeometric function