CHAPTER – III

THE q-HERMITE POLYNOMIALS
CHAPTER – III

THE q-HERMITE POLYNOMIALS

3.1. INTRODUCTION:

Heine [127] give the following representation for the Legendre polynomials \(\{P_n(x)\}_{n=0}^{\infty} \)

\[
P_n(\cos \theta) = \frac{4}{\pi} \frac{2 \cdot 4 \cdots 2n}{3 \cdot 5 \cdots (2n+1)} \sum_{k=0}^{\infty} f_{k,n} \sin (n + 2k + 1) \theta
\]

where \(f_{0,n} = 1 \) and

\[
f_{k,n} = \frac{1.3 \cdots (2k-1)}{2 \cdot 4 \cdots 2k} \frac{(n+1) \cdots (n+k)}{(n+\frac{3}{2}) \cdots (n+\frac{5}{2}) \cdots (n+k+\frac{1}{2})}
\]

Szego [127] generalized this result to the ultraspherical polynomial set \(\{C_n^\lambda(x)\}_{n=0}^{\infty} \) and obtained

\[
\frac{(\sin \theta)^{2\lambda-1}}{2^\lambda} C_n^\lambda(\cos \theta) = \sum_{k=0}^{\infty} f_{k,n}^\lambda \sin (n + 2k + 1) \theta \tag{3.1.1}
\]

where

\[
f_{k,n}^\lambda = \frac{2^{2-2\lambda} \Gamma(n+2\lambda)\Gamma(1-\lambda)\Gamma(n+1)\Gamma(n+\lambda+1)K!}{\Gamma(\lambda)\Gamma(n+\lambda+1)K! (n+\lambda+1)_k} , \quad \lambda > 0
\]

Equation (5.1.1) is the Fourier sine series expansion of \((\sin \theta)^{2\lambda-1} C_n^\lambda(\cos \theta) \). Because for each non-negative integer \(n \), \(f_{k,n}^\lambda \) is eventually monotonic in \(K \) and \(\lim_{k \to \infty} f_{k,n}^\lambda = 0 \), it follows from classical Fourier
analysis. That (5.1.1) converges pointwise in \((0, \pi)\) and uniformly on \([\varepsilon, \pi - \varepsilon]\) for \(0 < \varepsilon < \frac{\pi}{2}\).

It is well known [113] that \(\left\{C_n^0(\cos \theta)\right\}_{n=0}^{\infty}\) is orthogonal on \([0, \pi]\) with weight function \((\sin \theta)^{2n-1}\). In [6] Allaway identified a large class of orthogonal polynomial sets that satisfy an equation of the form (3.1.1).

One of these polynomial sets turned out to be \(\{R_n(x; q)\}_{n=0}^{\infty}\) designed by three term recursion relation

\[
\begin{align*}
R_0(x; q) &= 1 \\
R_1(x; q) &= 2x \\
R_{n+1}(x; q) &= 2xR_n(x; q) - (1 - q^n) R_{n-1}(x; q), \quad (n \geq 1)
\end{align*}
\]

where \(|q| < 1\). From this three term recursion formula it is easy to show that

\[
\lim_{q \to 1} \frac{R_n\left(\frac{1-q}{2}\right)^{\frac{1}{2}} x; q}{\left(\frac{1-q^n}{2}\right)^{\frac{n}{2}}} = H_n(x),
\]

where \(\{H_n(x)\}_{n=0}^{\infty}\) is the Hermite polynomial set [113]. It is for this reason that \(\{R_n(x; q)\}_{n=0}^{\infty}\) is called the q-Hermite polynomial set. This polynomial set was first introduced by Rogers [109] in 1894.

In paper [10] Allaway studied some of the properties of \(\{R_n(x; q)\}\). He showed that \(\{R_n(x; q)\}_{n=0}^{\infty}\) is characterized by a Fourier sine series similar to (5.1.1) in which the coefficients satisfy a very simple recursion formula. From
this fact has been able to deduce that \(\{R_n(\cos \theta ; q)\}_{n=0}^{\infty} \) is orthogonal on \([0, \pi]\) with respect to the weight function \(\theta_1 \left(z; q^2 \right) \), where \(\theta_1 (z ; q) \) is one of the Theta Functions [113], defined by

\[
\theta_1 (z, q) = 2 \sum_{n=0}^{\infty} (-1)^n q^{\left(\frac{n+1}{2} \right)^2} \sin (2n+1)z
\] (3.1.3)

It is interesting to note that

\[
R_n (x; q) = V^n H_n \left(\frac{u}{v}; q \right) = U^n H_n \left(\frac{v}{u}; q \right)
\] (3.1.4)

where \(u = x - \sqrt{x^2 - 1}, \quad v = x + \sqrt{x^2 - 1} \) and \(H_n (x ; q) \) is the polynomial set first introduced by Szego [128]. \(H_n (x ; q) \) is defined by

\[
H_n (x ; q) = \sum_{k=0}^{n} \binom{n}{k} x^k
\] (3.1.5)

Carlitz [40] has made a detailed study of \(\{H_n (x ; q)\}_{n=0}^{\infty} \). Also, Al-Salam and Chihara [8] have studied generalization of \(\{R_n (x ; q)\}_{n=0}^{\infty} \).

3.2. ORTHOGONALITY OF \(\{R_n (x ; q)\}_{n=0}^{\infty} \):

For \(q \), a real number such that \(|q| < 1 \),

\[
\sum_{n=1}^{\infty} \left| q^{n(n+1)/2} \right|^2 < \infty.
\]
Thus by Riesz-Fischer theorem there exists $w(\cos \theta; q) \in L^2[0, \pi]$ such that for all non-negative integer n,

$$
\int_0^\pi w(\cos \theta; q) \sin((n+1)\theta) \, d\theta = \begin{cases} (-1)^k q^{\frac{k(k+1)}{2}}, & n = 2k \\ 0, & n = 2k + 1 \end{cases}
$$

(3.2.1)

In (3.2.1), Allaway [10] substituted $x = \cos \theta$ to obtain

$$
\int_{-1}^1 w(x; q) U_n(x) = \begin{cases} (-1)^k q^{\frac{k(k+1)}{2}}, & n = 2k \\ 0, & n = 2k + 1 \end{cases}
$$

(3.2.2)

where $\{U_n(x)\}_{n=0}^\infty$ is the Chebyshev polynomial of second kind (see [113]), defined by

$$
u_n(\cos \theta) = \frac{\sin((n+1)\theta)}{\sin \theta} \quad (n \geq 0).
$$

He extended this definition of $\{U_n(x)\}_{n=0}^\infty$ to all integers n by defining

$$
\begin{align*}
U_{-1}(x) &= 0 \\
U_n(x) &= -U_{n-2}(x)
\end{align*}
$$

(3.2.3)

It is easy to show that these extended Chebyshev polynomials of the second kind satisfy a three term recursion relation of the form

$$
\begin{align*}
U_0(x) &= 1 \\
U_1(x) &= 2x \\
U_n(x) &= 2x U_{n-1}(x) - U_{n-2}(x)
\end{align*}
$$

(3.2.4)

Both $\{R_n(x; q)\}$ and $\{U_n(x; q)\}_{n=-\infty}^\infty$ are examples of symmetric orthogonal polynomial sets and thus for all $n \geq 0$ and $0 \leq n + 2k$, we have
By using this equation and equation (3.2.2) we obtain for \(n \geq 0 \) and \(n + 2k \geq 0 \)

\[
\int_{-1}^{1} w(x;q) R_n(x;q) U_{n+2k+1}(x) \, dx = 0 \quad (3.2.5)
\]

Let us define for \(n \geq -1 \) and all integers \(k \)

\[
f_{k,n} = \begin{cases}
 \int_{-1}^{1} w(x;q) R_n(x;q) U_{n+2k}(x) \, dx, & \text{if } n + 2k \geq 0 \text{ and } n \neq -1 \\
 0, & \text{if } n + 2k < 0 \text{ or } n = -1
\end{cases}
\]

(3.2.6)

It follows directly from this definition and three term recursion formulas for \(\{R_n(x;q)\}_{n=0}^{\infty} \) and \(\{U_n(x;q)\}_{n=-\infty}^{\infty} \) that, for all integer values \(k \),

\[
f_{k,n+1} = f_{k+1,n} + f_{k,n} - (1 - q^n) f_{k+1,n-1} \quad (3.2.7)
\]

for \(n \geq 0 \).

Allaway proved by mathematical induction on \(n \) that for all non-negative integers \(k \)

\[
f_{k,n} = (-1)^k q^{\frac{k(k+1)}{2}} [q]_{n+k}
\]

(3.2.8)

For \(n = 0 \), he obtained from definition (3.2.6) and equation (5.2.2)

\[
f_{k,0} = \int_{-1}^{1} w(x) U_{2k}(x) \, dx = (-1)^k q^{\frac{k(k+1)}{2}},
\]

and for \(n = 1 \), he obtained in the same manner
\[f_{k,1} = \int_{-1}^{1} w(x; q) R_1(x; q) U_{1+2k}(x) \, dx. \]

\[= \int_{-1}^{1} w(x) (U_{2+2k}(x) + U_{2k}(x)) \, dx \]

\[= \left(-1 \right)^{k+1} q^{\frac{(k+1)(k+2)}{2}} + (-1)^k q^{\frac{k(k+1)}{2}} \]

\[= (-1)^k q^{\frac{k(k+1)}{2}} \left(1 - q^{k+1} \right). \]

Thus equation (3.2.8) is true for all non-negative integers \(k \), and \(n = 0 \) or 1. Now let us make the induction hypothesis that equation (3.2.8) is true for all non-negative integers \(k \), and \(n = 0, 1, 2, \ldots, m \). By equation (3.2.7) and the induction hypothesis we obtain for all non-negative integers \(k \).

\[f_{k,m+1} = \frac{(-1)^{k+1} q^{\frac{(k+1)(k+2)}{2}}}{[q]_{m+1+1}} + (-1)^k q^{\frac{k(k+1)}{2}} \frac{[q]_{m+1+1}}{[q]_k} \]

\[\quad - \frac{(1 - q^m) (-1)^{k+1} q^{\frac{(k+1)(k+2)}{2}}}{[q]_{m+1}} \frac{[q]_{m+1+1}}{[q]_{m+1+k}} \]

\[= \frac{(-1)^k q^{\frac{k(k+1)}{2}}}{[q]_k} \frac{[q]_{m+1+k}}{[q]_{m+1+1+k}} \]

It is an easy exercise to show that equation (3.2.8) is equivalent to

\[\int_{-1}^{1} R_n(x; q) U_m(x) w(x; q) \, dx = \begin{cases} 0, & 0 \leq m < n \\ \frac{[q]_m}{[q]_n}, & m = n \end{cases} \quad (3.2.9) \]

From equation (3.2.5) we know that for \(n \geq 0 \) and \(n + 2k \geq 0 \)
\[\int_{-1}^{1} R_n(x; q) U_{n+2k+1}(x) w(x; q) dx = 0, \]

and from equations (3.2.8) and (3.2.6) we have that for \(n \geq 0, \)
\[
\int_{-1}^{1} R_n(x; q) U_n(x) w(x; q) dx = [q]^n.
\]

By the definition of \(f_{k,n} \) as given by equation (3.2.6)

\[f_{k,0} = 0 \] (3.2.10)

for \(k, \) a negative integer. Also for the case \(n = 1, \) we have from the definition of
\(f_{k,n} \) that \(f_{-1,1} = 0, \) and from equations (3.2.7) and (3.2.10) that

\[f_{k,1} = 0, \]

for \(k, \) a negative integer. Now let us make the induction hypothesis that for all
negative integer \(k, \)

\[f_{k,n} = 0. \]

for \(n = 0, 1, 2, \ldots, m. \) By equation (3.2.7), we have

\[f_{k,m+1} = f_{k+1,m} + f_{k,m} - (1-q^m) f_{k+1,m-1} \] (3.2.11)

Thus from the induction hypothesis

\[f_{k,m+1} = 0 \quad \text{for} \quad k = -2, -3, \ldots. \]

For \(k = -1, \) we obtain from equations (3.2.11) and (3.2.8), and the induction hypothesis

\[f_{-1,m+1} = f_{0,m} - (1-q^m) f_{0,m-1} \]

\[= [q]^m - (1-q^m)[q]_{m-1} \]

\[= 0. \]
Therefore for all negative integers \(k \) and non-negative integers \(n \), \(f_{k,n} = 0 \).

Therefore \(\{R_n(x;q)\}_{n=0}^{\infty} \) is orthogonal on \([-1, 1]\) with respect to the weight function

\[
 w(x;q) = \frac{2}{\pi} \sqrt{1-x^2} \sum_{k=0}^{\infty} (-1)^k q^{k(k+1)/2} U_{2k}(x) \quad (3.2.12)
\]

3.3. A CHARACTERIZATION OF \(\{R_n(x;q)\}_{n=0}^{\infty} \):

Let the polynomial set \(\{E_n^\lambda(x)\}_{n=0}^{\infty} \) be defined by

\[
 E_n^\lambda(x) = \frac{n!}{(1+\lambda)_n} C_n^\lambda(x) \quad (n \geq 0),
\]

where \(\{C_n^\lambda(x)\}_{n=0}^{\infty} \) is the ultraspherical polynomial set. It follows directly from equation (3.1.1) that

\[
 \left(1-x^2\right)^{-\frac{1}{2}} E_n^\lambda(x) = \frac{2^{2\lambda}(n+2\lambda)}{\Gamma(\lambda) \Gamma(n+\lambda+1)} \sqrt{1-x^2} \sum_{k=0}^{\infty} g_{k,n} U_{n+2k}(x)
\]

(3.3.1)

where

\[
 g_{k,n}^\lambda = \frac{k-\lambda}{k} g_{k-1,n+1}^\lambda \quad (3.3.2)
\]

Equations (3.3.1) and (3.3.2) suggest studying the polynomial set \(\{A_n(x)\}_{n=0}^{\infty} \) such that there exists a function \(w(x) \) and a sequence of real numbers \(\{\alpha_n\}_{k=0}^{\infty} \) having the property that the Fourier Chebychev expansion of \(w(x) A_n(x) \) is
\[w(x)A_n(x) = \frac{2}{\pi} \sum_{k=0}^{\infty} h_{k,n} U_{n+2k}(x) \]

(3.3.3)

where

\[h_{0,n} \neq 0 \]

and

\[h_{k,n} = \alpha_k h_{k-1,n+1} \quad (k \geq 1, \ n \geq 0) \]

(3.3.4)

In [6] Allaway found the three recursion relation for all these polynomial sets and studied some of their properties.

It is easy to show (see [6]) that all polynomials sets \(\{A_n(x)\}_{n=0}^{\infty} \) that satisfy equation (5.3.3) are symmetric and orthogonal on \([-1, 1]\) with respect to the weight functions \(w(x) \).

It is well known (see [6]) that such symmetric orthogonal polynomial sets satisfy a three term recursion formula of the form

\[
\begin{align*}
A_0(x) &= 1, \\
A_1(x) &= 2b_1(x), \\
A_n(x) &= 2b_n x \ A_{n-1}(x) - \lambda_n A_{n-2}(x), \quad (n \geq 2)
\end{align*}
\]

(3.3.5)

where \(\{b_n\}_{n=0}^{\infty} \) and \(\{\lambda_n\}_{n=0}^{\infty} \) are real non-zero sequences.

We note from equation (3.1.2) that in order for equation (3.3.5) to the three term recursion relation for \(\{R_n(x; q)\}_{n=0}^{\infty} \), we require \(b_1 = b_2 \) and \(2b_1 b_2 > \lambda_2 \).

Allaway [10] proved the following theorem:
Theorem (3.3.1): Let \(\{A_n(x)\}_{n=0}^\infty \) be any polynomial set satisfying equations (3.3.3), (3.3.4) and (3.3.5). Also let \(\{R_n(x; q)\}_{n=0}^\infty \) be defined by (3.1.2).

\[
R_n(x; q) = \frac{A_n(x)}{b_1^n}
\]

if and only if \(b_1 = b_2 \) and \(2b_1b_2 > \lambda_2 > 0 \).

3.4. THE WEIGHT FUNCTION \(w(x; q) \):

From equation (3.2.11) we see that the Fourier sine series expansion of \(w(\cos \theta; q) \) is given by

\[
w(\cos \theta; q) = \frac{2}{\pi} \sum_{k=0}^{\infty} (-1)^k q^{\frac{k(k+1)}{2}} \sin(2k+1)\theta
\]

\[
= \frac{2}{\pi} q^\frac{1}{8} \sum_{k=0}^{\infty} (-1)^k \left(q^\frac{1}{2} \right)^{k^2+k+\frac{1}{4}} \sin(2k+1)\theta.
\]

By comparing this with the theta function \(\theta_1(z, q) \) as described in [113] by

\[
\theta_1(z, q) = 2 \sum_{n=0}^{\infty} (-1)^n q^{\frac{n+\frac{1}{2}}{2}} \sin(2n+1)z. \tag{3.4.1}
\]

Allaway [10] obtained

\[
w(\cos z; q) = \frac{-1}{\pi} q^\frac{1}{8} \theta_1 \left(z, q^{\frac{1}{2}} \right) \tag{3.4.2}
\]

\(\theta_1(z, q) \) has an infinite product representation (see [113]).
\[\theta_i(z, q) = 2q^i \sin z \prod_{n=1}^{\infty} \left(1 - q^{2n} \right) \left(1 - 2q^{2n} \cos 2z + q^{4n} \right). \]

Therefore

\[w(\cos z; q) = \frac{2}{\pi} \sin z \prod_{n=1}^{\infty} \left(1 - q^n \right) \left(1 - 2q^n \cos 2z + q^{2n} \right) \quad (3.4.3) \]

Equation (3.4.3) agrees with results obtained by Al-Salam and Chihara [8, P. 28].

3.5. MEHLER’S FORMULA FOR q-HERMITE POLYNOMIALS:

Bressoud [33] denoted the q-Hermite polynomials by the symbol \(H_n(x \mid q), |q| < 1. \) He pointed out that \(H_n(x \mid q) \) can be defined by their generating function:

\[\prod_{n=0}^{\infty} \frac{1}{\left(1 - 2xr q^n + r^2 q^{2n} \right)} = \sum_{n=0}^{\infty} \frac{H_n(x \mid q)r^n}{(q)_n} \quad (3.5.1) \]

Or by their recurrence relation:

\[
\begin{align*}
2x H_n(x \mid q) &= H_{n+1}(x \mid q) + \left(1 - q^n \right) H_{n-1}(x \mid q) \\
H_1(x \mid q) &= 0 \\
H_0(x \mid q) &= 1
\end{align*}
\]

Or by their Fourier expansion:

\[H_n(\cos \theta \mid q) = \sum_{k=0}^{n} \left[\begin{array}{c} n \\ k \end{array} \right]_q \cos (n - 2k)\theta \\
= \sum_{k=0}^{n} \left[\begin{array}{c} n \\ k \end{array} \right]_q e^{i(n-2k)\theta} \quad (3.5.3) \]
These polynomials have been studied by Rogers [108], [109], [110], [111], Sezgo [128], Carlitz [40], [41] and Askey and Ismail [9]. The Rogers-Ramanujan identities first arose in the study of these polynomials (see Rogers [109], Bressoud [35]).

The q-Hermite polynomials are also of formal interest, for they have been found to satisfy analogs of many of the formulae known for the Hermite polynomials. Among these is a q-analogue of Mehler's formula:

\[
\left(\frac{\left(r e^{i0} \right)_n}{\left(r e^{i0-\phi} \right)_n} \right)^2 = \sum_{n=0}^{\infty} \frac{H_n(\cos \theta | q) H_n(\cos \phi | q) r^n}{(q)_n} \tag{3.5.4}
\]

For simplicity of notation, \(\left(r e^{i0} \right)_n \) will be used to denote \((r e^{i0}) \infty \), whether or not \(r \) and \(\theta \) are both real.

This formula was known to Rogers, and is a corollary of a more general result, first proved in [110] and then again in [108]:

\[
\left(\frac{\left(\lambda e^{i\phi} \right)_n}{\left(\mu e^{i\phi} \right)_n} \right)^2 = \sum_{n=0}^{\infty} \frac{H_n(\cos \theta | q) \sum_{r=0}^{\infty} \frac{\lambda^r \mu^{n-r}}{(q)_r (q)_{n-r}}}{\sum_{n=0}^{\infty} \lambda^{n-r}} \tag{3.5.5}
\]

Equation (3.5.4) follows if \(\lambda = re^{i\phi} \), \(\mu = re^{i\theta} \), and equation (3.5.3) is used to sum the inner sum of the right hand side.

Neither of Roger's proofs of (3.5.5) is particularly simple. Bressoud [33] gave a proof of (3.5.5) which relies only on the recurrence relation (3.5.2). His proof is given below:
Proof of (3.5.5): Let

\[f(\lambda, \mu; x) = \sum_{n=0}^{\infty} H_n(x|q) \sum_{r=0}^{n} \frac{\lambda^r \mu^{n-r}}{(q)_r (q)_{n-r}} \]

\[= \sum_{r,s \geq 0} \frac{\lambda^r \mu^s}{(q)_r (q)_s} H_{rs}(x|q). \]

We use (3.5.2) to obtain the following;

\[2x f(\lambda, \mu; x) = \sum_{r,s \geq 0} \frac{\lambda^r \mu^s}{(q)_r (q)_s} 2x H_{rs}(x|q). \]

\[= \sum_{r,s \geq 0} \frac{\lambda^r \mu^s}{(q)_r (q)_s} H_{rs+1}(x|q) + \sum_{r,s \geq 0} \frac{\lambda^r \mu^s}{(q)_r (q)_s} (1-q^r s) H_{rs+1}(x|q) \]

\[= \frac{1}{\lambda} \sum_{r,s \geq 0} \frac{\lambda^r \mu^s}{(q)_r (q)_s} (1-q^r s) H_{rs}(x|q) + \sum_{r,s \geq 0} \frac{\lambda^r \mu^s}{(q)_r (q)_s} (1-q^r s) H_{rs+1}(x|q) \]

\[+ \sum_{r,s \geq 0} \frac{(\lambda q)^r \mu^s}{(q)_r (q)_s} (1-q^r s) H_{rs+1}(x|q). \]

\[= \frac{1}{\lambda} \sum_{r,s \geq 0} \frac{\lambda^r \mu^s}{(q)_r (q)_s} H_{rs}(x|q) - \frac{1}{\lambda} \sum_{r,s \geq 0} \frac{(\lambda q)^r \mu^s}{(q)_r (q)_s} H_{rs}(x|q) \]

\[+ \lambda \sum_{r,s \geq 0} \frac{\lambda^r \mu^s}{(q)_r (q)_s} H_{rs}(x|q) + \mu \sum_{r,s \geq 0} \frac{(\lambda q)^r \mu^s}{(q)_r (q)_s} H_{rs}(x|q) \]

\[= \frac{1}{\lambda} f(\lambda, \mu; x) - \frac{1}{\lambda} f(\lambda q, \mu; x) + \lambda f(\lambda, \mu; x) + \mu f(\lambda q, \mu; x) \quad (3.5.6) \]

If (3.5.6) is solved for \(f(\lambda, \mu; x) \), we get

\[f(\lambda, \mu; x) = \left(\frac{1 - \frac{\lambda \mu}{2 \lambda \mu + \lambda^2}}{1 - 2x \frac{\lambda}{\lambda + \lambda^2}} \right) f(\lambda q, \mu; x) \quad (3.5.7) \]

or equivalently,
\[f(\lambda, \mu; \cos \theta) = (1 - \lambda \mu) f(\lambda q, \mu; \cos \theta) \] (3.5.8)

Since \(f \) is symmetric in \(\lambda \) and \(\mu \), we also have;

\[f(\lambda, \mu; \cos \theta) = \frac{(1 - \lambda \mu)}{|1 - \mu e^{i\theta}|^2} f(\lambda, \mu q; \cos \theta) \] (3.5.9)

If equations (3.5.8) and (3.5.9) are now combined, we get

\[
\begin{align*}
\frac{\lambda \mu}{(1 - \lambda e^{i\theta})(1 - \mu e^{i\theta})} & f(\lambda q^2, \mu q^2; \cos \theta) \\
\vdots & \vdots \\
\frac{\lambda \mu}{(1 - \lambda e^{i\theta})^k (1 - \mu e^{i\theta})^k} & f(\lambda q^k, \mu q^k; \cos \theta) \\
\vdots & \vdots \\
\frac{\lambda \mu}{(1 - \lambda e^{i\theta})^\infty (1 - \mu e^{i\theta})^\infty} & f(0, 0; \cos \theta) \quad (3.5.10)
\end{align*}
\]

But \(f(0, 0; \cos \theta) = 1 \), and so equation (3.5.5) is proved.

As Rogers observed, equation (3.5.5) has many interesting corollaries, one of which is a formula for the product of two q-Hermite polynomials. In the following equation, we use the generating function for the q-Hermite polynomials equation (3.5.5), and an elementary result of Euler.
When the coefficients of λ^n, μ^m are compared, we see that

$$H_n(\cos \theta | q) H_m(\cos \theta | q) = \sum_{t=0}^{\min(m, n)} \frac{(q)_n (q)_m}{(q)_t (q)_{m-t} (q)_{n-t}} H_{m+n-2t}(\cos \theta | q)$$

(3.5.12)

3.6 FURTHER PROPERTIES OF q-HERMITE POLYNOMIALS:

Al-Salam and Ismail [15], in 1988, used continuous q-Hermite polynomials to give a new proof of a q-beta integral which is an extension of the Askey-Wilson integral. Multilinear generating functions, some due to Carlitz were also established by them.

The continuous q-Hermite polynomials $\{H_n(x | q)\}$ are given by

$$H_n(\cos \theta | q) = \sum_{k=0}^{n} \frac{(q)_k}{(q)_n (q)_{n-k}} e^{i(n-2k)\theta}$$

(3.6.1)

(see [8]). Their orthogonality [8, 6] is

$$\int_0^\pi w(\theta) H_m(\cos \theta | q) H_n(\cos \theta | q) = (q;q)_n \delta_{mn}$$

(3.6.2)

where
\[w(\theta) = \frac{(q)_\infty}{2\pi} \left(e^{2i\theta} \right)_\infty \left(e^{-2i\theta} \right)_\infty \quad (3.6.3) \]

Rogers also introduced the continuous q-ultraspherical polynomials \(\{ C_n(x; \beta | q) \} \) generated by
\[
\sum_{n=0}^{\infty} C_n(x; \beta | q) t^n = \frac{(\beta t e^{i\theta})_\infty}{(t e^{i\theta})_\infty} \left(\beta t e^{-i\theta} \right)_\infty \quad (3.6.4)
\]
whose weight function was found recently [12, 14]. It is easy to see that
\[
C_n(x; 0 | q) = H_n(x | q)/(q)_n \quad (3.6.5)
\]

Rogers solved the connection coefficient problem of expressing \(C_n(x; \beta | q) \) in terms of \(C_n(x; \gamma | q) \) as a consequence of which we get
\[
C_n(x; \beta | q) = \sum_{k=0}^{\binom{n}{2}} (-\beta)^k q^{k(k-1)/2} \frac{(\beta)_{n-k}}{(q)_k (q)_{n-2k}} H_{n-2k}(x | q) \quad (3.6.6)
\]

Rogers evaluated explicitly the coefficients in the linearization of products of two q-Hermite polynomials. He proved
\[
H_m(x | q) H_n(x | q) = \sum_{k=0}^{\min(m,n)} \frac{(q)_m (q)_n}{(q)_k (q)_{n-k} (q)_{m-k}} H_{m+n-2k}(x | q) \quad (3.6.7)
\]
Which can be iterated to obtain the sum
\[
H_k(x | q) H_m(x | q) H_n(x | q) = \sum_{r,s} \frac{(q)_k (q)_m (q)_n}{(q)_{m-r} (q)_{n-r} (q)_{r} (q)_{k-s} (q)_{m+n-2r} (q)_{s}} H_{k+m+n-2r-2s}(x | q) \quad (3.6.8)
\]
We shall also need the formula
\[
\frac{H_n (x \mid q)}{(q)_m} C_n (x; \beta \mid q) = \sum_{k,j} \left(\begin{array}{c}
-\beta \\
q
\end{array} \right)^k q^{(k-1)/2} (\beta)_{n-k} (q)_k (q)_{m-j} (q)_{n-k-j} H_{m+n-2k-2j} (x \mid q)
\]
(3.6.9)

which follows from (5.6.6) and (5.6.7).

We shall also use the polynomials
\[
h_n (x \mid q) = \sum_{k=0}^{n} \frac{(q)_n}{(q)_k (q)_{n-k}} x^k,
\]
so that
\[
H_n (\cos \theta x \mid q) = e^{i n \theta} h_n (e^{-2i \theta} \mid q)
\]
(3.6.10)

It was shown in [1], [83] that \(\{ h_n (a \mid q) \} \) are moments of a discrete distribution \(d \psi_a (x) \), viz.,
\[
h_n (a \mid q) = \int_{-\infty}^{\infty} x^n d \psi_a (x), n = 0, 1, 2, \ldots
\]
(3.6.11)

where \(d \psi_a (x) \) is a step function with jumps at the points \(x = q^k \) and \(x = a q^k \)
for \(k = 0, 1, 2, \ldots \) given by
\[
d \psi_a (q^k) = \frac{q^k}{(a)_\infty (q)_k (q \mid a)_k},
\]
d \psi_a (a q^k) = \frac{q^k}{(1 / a)_\infty (q)_k (a q)_k}
(3.6.12)

where \(a < 0, 0 < q < 1 \).

Askey and Wilson [14] proved
\[
\frac{(q)_\infty}{2 \pi} \int_{0}^{\pi} \frac{(e^{2i \theta})_\infty (e^{-2i \theta})_\infty d \theta}{\prod_{1 \leq i < j \leq 4} (a_j e^{i \theta})_\infty (a_j e^{-i \theta})_\infty} = \frac{(a_1 a_2 a_3 a_4)_\infty}{\prod_{1 \leq i < j \leq 4} (a_i a_j a_s)_\infty}
\]
(3.6.13)
where $| a_r | < 1$, for $r = 1, 2, 3, 4$. They used this integral to prove the orthogonality of what is now known as the Askey–Wilson polynomials.

Ismail and Stanton [85] observed that the left hand side of (3.6.13) is a generating function of the integral of the product of four q-Hermite polynomials times the weight function $w(\theta)$. They used this observation, combined with (3.6.8) and (3.6.3), to give a new proof of (3.6.13). Other analytic proofs of (3.6.13) can be found in [13] and [115].

Furthermore a combinational derivation of (3.6.13) is given in [84].

Nasrallah and Rahman [107], proved the following generalization of (3.6.13).

Theorem (3.6.1): (Nasrallah and Rahman). If $| a_j | < 1$, $j = 1, 2, 3, 4$ and $| q | < 1$ then

$$
\int_0^\pi w(\theta) \left(\frac{(A a_1 e^{i\theta})_\infty}{(a_k e^{i\theta})_\infty} \right)^{n} \prod_{1 \leq i < j \leq 5} (A a_i a_j)_\infty d\theta
$$

$$
= \frac{(a_1 a_2 a_3 a_4 a_5)_\infty (A a_1 a_2 a_3 a_4 a_5)_\infty (A a_3 a_4 a_5)_\infty}{(A a_1 a_3 a_4 a_5)_\infty \prod_{1 \leq i < j \leq 5} (a_i a_j)_\infty} g w_7 \left(A a_1 a_3 a_4 a_5 q^{-1}; A a_5 / a_2, A, a_1 a_3, a_1 a_4, a_3 a_4 / a_2 a_5 \right) \tag{3.6.14}
$$

where

$$
g w_7 (a; b, c, d, e, f | z) = g \Phi_7 \left[\frac{a, q \sqrt{a}, -q \sqrt{a}, b, c, d, e, f}{\sqrt{a}, -\sqrt{a}, qa / b, qa / c, qa / d, qa / e, qa / f} | z \right]
$$
Rahman [116] observed that the ϕ_7 in (3.6.14) can be summed when $A = a_1, a_2, a_3, a_4$. In this case, we have

$$
\int_0^\pi w(\theta) \frac{a_1 a_2 a_3 a_4 a_5 e^{i\theta}}{\prod_{1 \leq j < 5} (a_k e^{i\theta})_{\infty}} \frac{a_1 a_2 a_3 a_4 a_5 e^{-i\theta}}{\prod_{1 \leq k < 5} (a_k e^{-i\theta})_{\infty}} \mathrm{d}\theta = \prod_{k=1}^5 \frac{a_1 a_2 a_3 a_4 a_5}{a_k}
$$

(3.6.15)

Askey [31] gave an elementary proof of (3.6.15) by showing the two sides of (3.6.15) satisfy the same functional equation.

3.7. GENERATING FUNCTIONS:

To illustrate their technique Al-Salam and Ismail [15] derived Carlitz [42] extension of Mehler formula:

$$
S = \sum_{n=0}^{\infty} h_n(a \mid q) h_{n+k}(b \mid q) \frac{z^n}{(q)_n} = \frac{(abz^2)_{\infty}}{(z)_{\infty} (bz)_{\infty} (az)_{\infty} (abz)_{\infty}} \sum_{r=0}^{k} \frac{(q)_r (bz)_r (abz)_r}{(q)_{k-r} (abz^2)_{k-r}} b^{k-r}
$$

(3.7.1)

They began by the generating function

$$
\sum_{n=0}^{\infty} h_n(a \mid q) \frac{z^n}{(q)_n} = \frac{1}{(z)_{\infty} (az)_{\infty}}
$$

(3.7.2)

Multiplying by z^k, then replacing z by xz and using (3.6.11), we get

$$
\sum_{n=0}^{\infty} h_n(a \mid q) h_{n+k}(b \mid q) \frac{z^n}{(q)_n} = \frac{1}{(b)_{\infty} (z)_{\infty} (az)_{\infty}} z^{\phi_1} \left[\frac{z, az}{q | b | q^{-k+1}} \right]
$$
Now using a transformation formula of Sears [126] (see also [72]):

\[
\phi_{1}[a, b, c | z] = \frac{(b)_\infty}{(c)_\infty} \frac{(q/c)_\infty (c/a)_\infty (az/q)_\infty (q^2/az)_\infty}{(bq/c)_\infty (q/a)_\infty (az/c)_\infty (qc/az)_\infty} \phi_{1}[q^2 / c | z]
\]

we get that the left hand side of (3.7.1) is

\[
S = \frac{(az^2 q^k)}{(z)_\infty (az)_\infty (bq^k)_\infty (q/z)_\infty} \phi_{1}[q^2 / bz, q^{l-k} / abz^2 | abz]
\]

By Heine's transformation formula

\[
\phi_{1}[\alpha, \beta, \gamma | z] = \frac{(\beta)_\infty (\alpha z)_\infty}{(\gamma)_\infty (z)_\infty} \phi_{1}[\gamma / \beta, z | \alpha, \beta]
\]

we get that

\[
S = \frac{(ab^2 q^k)}{(z)_\infty (az)_\infty (bq^k)_\infty (abz)_\infty} \phi_{1}[q^{-k}, abz, \frac{q}{bz} | abz]
\]

Now by a transformation formula [72 ex. 1.14 (ii)]

\[
\phi_{1}[q^n, b, c | z] = b^n \frac{(c/b)_n}{(c)_n} \sum_{j=0}^{n} \frac{(q^n)_j (b)_j (q/z)_j (-1)^j q^{-j(j-1)/2}}{(q)_j (bq^{l-n/c})_j} \frac{(z/c)}{(q)_m (q)_n (q)_k}
\]

we get the right hand side of (3.7.1).

We next consider the sum

\[
G = G(a, b, x, y, z) = \sum_{m, n, k} x^m y^n z^k \frac{h_{m+k} (a \mid q) h_{n+k} (b \mid q)}{} \]

75
\begin{align*}
&= \sum_{m,n,k} \frac{x^m y^n z^k}{(q)_m (q)_n (q)_k} \, h_{n+k}(b \mid q) \int_{-\infty}^{\infty} u^{m+k} \, d\psi_a(u) \\
&= \int_{-\infty}^{\infty} \frac{1}{(xu)_\infty} \sum_{k,n} \frac{y^n(zu)^k}{(q)_n (q)_k} \, d\psi_a(u), \\
&= \int_{-\infty}^{\infty} \frac{1}{(xu)_\infty} \sum_{r=0}^{\infty} \frac{y^r}{(q)_r} h_r(b \mid q) \, h_r\left(\frac{zu}{y} \mid q\right) \, d\psi_a(u) \tag{3.7.5}
\end{align*}

using the q-Mehler's formula (formula (3.7.1) with \(k = 0 \))

\begin{align*}
G(a,b,x,y,z) &= \frac{1}{(y)_\infty (by)_\infty} \int_{-\infty}^{\infty} \frac{(byzu)_\infty}{(xu)_\infty (zu)_\infty (bzu)_\infty} \, d\psi_a(u) \\
&= \frac{(byz)_\infty}{(y)_\infty (by)_\infty (a)_\infty (x)_\infty (z)_\infty (bz)_\infty} \, _3\phi_2\left[\begin{array}{c} x, z, bz \\ q/a \ bzy \end{array} | q \right] \\
&\quad + \frac{(abzy)_\infty}{(y)_\infty (by)_\infty (1/a)_\infty (ax)_\infty (az)_\infty (abz)_\infty} \, _3\phi_2\left[\begin{array}{c} ax, az, abz \\ a q, abzy \end{array} | q \right] \tag{3.7.6}
\end{align*}

But Carlitz [42] showed that

\begin{align*}
G(a,b,x,y,z) &= \frac{(axz)_\infty (byz)_\infty}{(x)_\infty (ax)_\infty (y)_\infty (by)_\infty (z)_\infty (az)_\infty (bz)_\infty} \, _3\phi_2\left[\begin{array}{c} x, y, z \\ axz, byz \end{array} | abz \right] \tag{3.7.7}
\end{align*}

Although (3.7.6) and (3.7.7) are the same, we shall nevertheless need to use (3.7.6) for the representation of \(G(a,b,x,y,z) \). Equating \(G \) in (3.7.6) and (3.7.7), we get the transformation formula
\[3 \phi_2 \left[\frac{x, y, z}{ax, byz} \right] = \frac{(axz)_{\infty}}{(a)_{\infty}} \left[\frac{3 \Phi_2}{x, y, z} \right] \]

\[+ \frac{(abz)_{\infty}}{(az)_{\infty}} \left[\frac{3 \Phi_2}{x, az, abz} \right] \]

\[+ \frac{(abz)_{\infty}}{(az)_{\infty}} \left[\frac{3 \Phi_2}{x, az, abz} \right] \] (3.7.8)

An interesting special case of (3.7.8) is

\[x = q^{-n} \text{ for } n = 0, 1, 2, \ldots, \text{ we get} \]

\[3 \phi_2 \left[\frac{q^{-n}, y, z}{azq^{-n}, byz} \right] = \frac{(q/a)_{n}}{(q/az)_{n}} \left[\frac{q^{-n}, b, bz}{q/a, bzy} \right] \] (3.7.9)

which is due to Sears [125]. Formula (3.7.9) in turn implies Jackson's theorem for the summation of a terminating balanced (Saalschützian) \(3 \Phi_2 \) with argument \(q \), viz.,

\[3 \phi_2 \left[\frac{q^{-n}, a, b}{c, abq^{-n/c}} \right] = \frac{(c/a)_{n} (c/b)_{n}}{(c)_{n} (c/ab)_{n}} \] (3.7.10)